Reference Airship manifests, CICD, and reference architecture.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
treasuremap/manifests/function/rook-operator/upstream/operator.yaml

483 lines
20 KiB

#################################################################################################################
# The deployment for the rook operator
# Contains the common settings for most Kubernetes deployments.
# For example, to create the rook-ceph cluster:
# kubectl create -f crds.yaml -f common.yaml -f operator.yaml
# kubectl create -f cluster.yaml
#
# Also see other operator sample files for variations of operator.yaml:
# - operator-openshift.yaml: Common settings for running in OpenShift
###############################################################################################################
# Rook Ceph Operator Config ConfigMap
# Use this ConfigMap to override Rook-Ceph Operator configurations.
# NOTE! Precedence will be given to this config if the same Env Var config also exists in the
# Operator Deployment.
# To move a configuration(s) from the Operator Deployment to this ConfigMap, add the config
# here. It is recommended to then remove it from the Deployment to eliminate any future confusion.
kind: ConfigMap
apiVersion: v1
metadata:
name: rook-ceph-operator-config
# should be in the namespace of the operator
namespace: rook-ceph # namespace:operator
data:
# Enable the CSI driver.
# To run the non-default version of the CSI driver, see the override-able image properties in operator.yaml
ROOK_CSI_ENABLE_CEPHFS: "true"
# Enable the default version of the CSI RBD driver. To start another version of the CSI driver, see image properties below.
ROOK_CSI_ENABLE_RBD: "true"
ROOK_CSI_ENABLE_GRPC_METRICS: "false"
# Set to true to enable host networking for CSI CephFS and RBD nodeplugins. This may be necessary
# in some network configurations where the SDN does not provide access to an external cluster or
# there is significant drop in read/write performance.
# CSI_ENABLE_HOST_NETWORK: "true"
# Set logging level for csi containers.
# Supported values from 0 to 5. 0 for general useful logs, 5 for trace level verbosity.
# CSI_LOG_LEVEL: "0"
# OMAP generator will generate the omap mapping between the PV name and the RBD image.
# CSI_ENABLE_OMAP_GENERATOR need to be enabled when we are using rbd mirroring feature.
# By default OMAP generator sidecar is deployed with CSI provisioner pod, to disable
# it set it to false.
# CSI_ENABLE_OMAP_GENERATOR: "false"
# set to false to disable deployment of snapshotter container in CephFS provisioner pod.
CSI_ENABLE_CEPHFS_SNAPSHOTTER: "true"
# set to false to disable deployment of snapshotter container in RBD provisioner pod.
CSI_ENABLE_RBD_SNAPSHOTTER: "true"
# Enable cephfs kernel driver instead of ceph-fuse.
# If you disable the kernel client, your application may be disrupted during upgrade.
# See the upgrade guide: https://rook.io/docs/rook/master/ceph-upgrade.html
# NOTE! cephfs quota is not supported in kernel version < 4.17
CSI_FORCE_CEPHFS_KERNEL_CLIENT: "true"
# (Optional) policy for modifying a volume's ownership or permissions when the RBD PVC is being mounted.
# supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html
CSI_RBD_FSGROUPPOLICY: "ReadWriteOnceWithFSType"
# (Optional) policy for modifying a volume's ownership or permissions when the CephFS PVC is being mounted.
# supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html
CSI_CEPHFS_FSGROUPPOLICY: "ReadWriteOnceWithFSType"
# (Optional) Allow starting unsupported ceph-csi image
ROOK_CSI_ALLOW_UNSUPPORTED_VERSION: "false"
# The default version of CSI supported by Rook will be started. To change the version
# of the CSI driver to something other than what is officially supported, change
# these images to the desired release of the CSI driver.
ROOK_CSI_CEPH_IMAGE: "quay.io/cephcsi/cephcsi:v3.3.1"
ROOK_CSI_REGISTRAR_IMAGE: "k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.0.1"
ROOK_CSI_RESIZER_IMAGE: "k8s.gcr.io/sig-storage/csi-resizer:v1.0.1"
ROOK_CSI_PROVISIONER_IMAGE: "k8s.gcr.io/sig-storage/csi-provisioner:v2.0.4"
ROOK_CSI_SNAPSHOTTER_IMAGE: "k8s.gcr.io/sig-storage/csi-snapshotter:v4.0.0"
ROOK_CSI_ATTACHER_IMAGE: "k8s.gcr.io/sig-storage/csi-attacher:v3.0.2"
# (Optional) set user created priorityclassName for csi plugin pods.
# CSI_PLUGIN_PRIORITY_CLASSNAME: "system-node-critical"
# (Optional) set user created priorityclassName for csi provisioner pods.
# CSI_PROVISIONER_PRIORITY_CLASSNAME: "system-cluster-critical"
# CSI CephFS plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.
# Default value is RollingUpdate.
# CSI_CEPHFS_PLUGIN_UPDATE_STRATEGY: "OnDelete"
# CSI RBD plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.
# Default value is RollingUpdate.
# CSI_RBD_PLUGIN_UPDATE_STRATEGY: "OnDelete"
# kubelet directory path, if kubelet configured to use other than /var/lib/kubelet path.
# ROOK_CSI_KUBELET_DIR_PATH: "/var/lib/kubelet"
# Labels to add to the CSI CephFS Deployments and DaemonSets Pods.
# ROOK_CSI_CEPHFS_POD_LABELS: "key1=value1,key2=value2"
# Labels to add to the CSI RBD Deployments and DaemonSets Pods.
# ROOK_CSI_RBD_POD_LABELS: "key1=value1,key2=value2"
# (Optional) Ceph Provisioner NodeAffinity.
# CSI_PROVISIONER_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"
# (Optional) CEPH CSI provisioner tolerations list. Put here list of taints you want to tolerate in YAML format.
# CSI provisioner would be best to start on the same nodes as other ceph daemons.
# CSI_PROVISIONER_TOLERATIONS: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/controlplane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) Ceph CSI plugin NodeAffinity.
# CSI_PLUGIN_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"
# (Optional) CEPH CSI plugin tolerations list. Put here list of taints you want to tolerate in YAML format.
# CSI plugins need to be started on all the nodes where the clients need to mount the storage.
# CSI_PLUGIN_TOLERATIONS: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/controlplane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) CEPH CSI RBD provisioner resource requirement list, Put here list of resource
# requests and limits you want to apply for provisioner pod
# CSI_RBD_PROVISIONER_RESOURCE: |
# - name : csi-provisioner
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-resizer
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-attacher
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-snapshotter
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-rbdplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI RBD plugin resource requirement list, Put here list of resource
# requests and limits you want to apply for plugin pod
# CSI_RBD_PLUGIN_RESOURCE: |
# - name : driver-registrar
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# - name : csi-rbdplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI CephFS provisioner resource requirement list, Put here list of resource
# requests and limits you want to apply for provisioner pod
# CSI_CEPHFS_PROVISIONER_RESOURCE: |
# - name : csi-provisioner
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-resizer
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-attacher
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-cephfsplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI CephFS plugin resource requirement list, Put here list of resource
# requests and limits you want to apply for plugin pod
# CSI_CEPHFS_PLUGIN_RESOURCE: |
# - name : driver-registrar
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# - name : csi-cephfsplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# Configure CSI CSI Ceph FS grpc and liveness metrics port
# CSI_CEPHFS_GRPC_METRICS_PORT: "9091"
# CSI_CEPHFS_LIVENESS_METRICS_PORT: "9081"
# Configure CSI RBD grpc and liveness metrics port
# CSI_RBD_GRPC_METRICS_PORT: "9090"
# CSI_RBD_LIVENESS_METRICS_PORT: "9080"
# Whether the OBC provisioner should watch on the operator namespace or not, if not the namespace of the cluster will be used
ROOK_OBC_WATCH_OPERATOR_NAMESPACE: "true"
# Whether to enable the flex driver. By default it is enabled and is fully supported, but will be deprecated in some future release
# in favor of the CSI driver.
ROOK_ENABLE_FLEX_DRIVER: "false"
# Whether to start the discovery daemon to watch for raw storage devices on nodes in the cluster.
# This daemon does not need to run if you are only going to create your OSDs based on StorageClassDeviceSets with PVCs.
ROOK_ENABLE_DISCOVERY_DAEMON: "false"
# Enable volume replication controller
CSI_ENABLE_VOLUME_REPLICATION: "false"
# CSI_VOLUME_REPLICATION_IMAGE: "quay.io/csiaddons/volumereplication-operator:v0.1.0"
# (Optional) Admission controller NodeAffinity.
# ADMISSION_CONTROLLER_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"
# (Optional) Admission controller tolerations list. Put here list of taints you want to tolerate in YAML format.
# Admission controller would be best to start on the same nodes as other ceph daemons.
# ADMISSION_CONTROLLER_TOLERATIONS: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/controlplane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
---
# OLM: BEGIN OPERATOR DEPLOYMENT
apiVersion: apps/v1
kind: Deployment
metadata:
name: rook-ceph-operator
namespace: rook-ceph # namespace:operator
labels:
operator: rook
storage-backend: ceph
spec:
selector:
matchLabels:
app: rook-ceph-operator
replicas: 1
template:
metadata:
labels:
app: rook-ceph-operator
spec:
serviceAccountName: rook-ceph-system
containers:
- name: rook-ceph-operator
image: rook/ceph:v1.6.3
args: ["ceph", "operator"]
volumeMounts:
- mountPath: /var/lib/rook
name: rook-config
- mountPath: /etc/ceph
name: default-config-dir
env:
# If the operator should only watch for cluster CRDs in the same namespace, set this to "true".
# If this is not set to true, the operator will watch for cluster CRDs in all namespaces.
- name: ROOK_CURRENT_NAMESPACE_ONLY
value: "false"
# To disable RBAC, uncomment the following:
# - name: RBAC_ENABLED
# value: "false"
# Rook Agent toleration. Will tolerate all taints with all keys.
# Choose between NoSchedule, PreferNoSchedule and NoExecute:
# - name: AGENT_TOLERATION
# value: "NoSchedule"
# (Optional) Rook Agent toleration key. Set this to the key of the taint you want to tolerate
# - name: AGENT_TOLERATION_KEY
# value: "<KeyOfTheTaintToTolerate>"
# (Optional) Rook Agent tolerations list. Put here list of taints you want to tolerate in YAML format.
# - name: AGENT_TOLERATIONS
# value: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/controlplane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) Rook Agent priority class name to set on the pod(s)
# - name: AGENT_PRIORITY_CLASS_NAME
# value: "<PriorityClassName>"
# (Optional) Rook Agent NodeAffinity.
# - name: AGENT_NODE_AFFINITY
# value: "role=storage-node; storage=rook,ceph"
# (Optional) Rook Agent mount security mode. Can by `Any` or `Restricted`.
# `Any` uses Ceph admin credentials by default/fallback.
# For using `Restricted` you must have a Ceph secret in each namespace storage should be consumed from and
# set `mountUser` to the Ceph user, `mountSecret` to the Kubernetes secret name.
# to the namespace in which the `mountSecret` Kubernetes secret namespace.
# - name: AGENT_MOUNT_SECURITY_MODE
# value: "Any"
# Set the path where the Rook agent can find the flex volumes
# - name: FLEXVOLUME_DIR_PATH
# value: "<PathToFlexVolumes>"
# Set the path where kernel modules can be found
# - name: LIB_MODULES_DIR_PATH
# value: "<PathToLibModules>"
# Mount any extra directories into the agent container
# - name: AGENT_MOUNTS
# value: "somemount=/host/path:/container/path,someothermount=/host/path2:/container/path2"
# Rook Discover toleration. Will tolerate all taints with all keys.
# Choose between NoSchedule, PreferNoSchedule and NoExecute:
# - name: DISCOVER_TOLERATION
# value: "NoSchedule"
# (Optional) Rook Discover toleration key. Set this to the key of the taint you want to tolerate
# - name: DISCOVER_TOLERATION_KEY
# value: "<KeyOfTheTaintToTolerate>"
# (Optional) Rook Discover tolerations list. Put here list of taints you want to tolerate in YAML format.
# - name: DISCOVER_TOLERATIONS
# value: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/controlplane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) Rook Discover priority class name to set on the pod(s)
# - name: DISCOVER_PRIORITY_CLASS_NAME
# value: "<PriorityClassName>"
# (Optional) Discover Agent NodeAffinity.
# - name: DISCOVER_AGENT_NODE_AFFINITY
# value: "role=storage-node; storage=rook, ceph"
# (Optional) Discover Agent Pod Labels.
# - name: DISCOVER_AGENT_POD_LABELS
# value: "key1=value1,key2=value2"
# The logging level for the operator: INFO | DEBUG
- name: ROOK_LOG_LEVEL
value: "INFO"
# The duration between discovering devices in the rook-discover daemonset.
- name: ROOK_DISCOVER_DEVICES_INTERVAL
value: "60m"
# Whether to start pods as privileged that mount a host path, which includes the Ceph mon and osd pods.
# Set this to true if SELinux is enabled (e.g. OpenShift) to workaround the anyuid issues.
# For more details see https://github.com/rook/rook/issues/1314#issuecomment-355799641
- name: ROOK_HOSTPATH_REQUIRES_PRIVILEGED
value: "false"
# In some situations SELinux relabelling breaks (times out) on large filesystems, and doesn't work with cephfs ReadWriteMany volumes (last relabel wins).
# Disable it here if you have similar issues.
# For more details see https://github.com/rook/rook/issues/2417
- name: ROOK_ENABLE_SELINUX_RELABELING
value: "true"
# In large volumes it will take some time to chown all the files. Disable it here if you have performance issues.
# For more details see https://github.com/rook/rook/issues/2254
- name: ROOK_ENABLE_FSGROUP
value: "true"
# Disable automatic orchestration when new devices are discovered
- name: ROOK_DISABLE_DEVICE_HOTPLUG
value: "false"
# Provide customised regex as the values using comma. For eg. regex for rbd based volume, value will be like "(?i)rbd[0-9]+".
# In case of more than one regex, use comma to separate between them.
# Default regex will be "(?i)dm-[0-9]+,(?i)rbd[0-9]+,(?i)nbd[0-9]+"
# Add regex expression after putting a comma to blacklist a disk
# If value is empty, the default regex will be used.
- name: DISCOVER_DAEMON_UDEV_BLACKLIST
value: "(?i)dm-[0-9]+,(?i)rbd[0-9]+,(?i)nbd[0-9]+"
# Time to wait until the node controller will move Rook pods to other
# nodes after detecting an unreachable node.
# Pods affected by this setting are:
# mgr, rbd, mds, rgw, nfs, PVC based mons and osds, and ceph toolbox
# The value used in this variable replaces the default value of 300 secs
# added automatically by k8s as Toleration for
# <node.kubernetes.io/unreachable>
# The total amount of time to reschedule Rook pods in healthy nodes
# before detecting a <not ready node> condition will be the sum of:
# --> node-monitor-grace-period: 40 seconds (k8s kube-controller-manager flag)
# --> ROOK_UNREACHABLE_NODE_TOLERATION_SECONDS: 5 seconds
- name: ROOK_UNREACHABLE_NODE_TOLERATION_SECONDS
value: "5"
# The name of the node to pass with the downward API
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
# The pod name to pass with the downward API
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
# The pod namespace to pass with the downward API
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
# Uncomment it to run lib bucket provisioner in multithreaded mode
#- name: LIB_BUCKET_PROVISIONER_THREADS
# value: "5"
# Uncomment it to run rook operator on the host network
#hostNetwork: true
volumes:
- name: rook-config
emptyDir: {}
- name: default-config-dir
emptyDir: {}
# OLM: END OPERATOR DEPLOYMENT