# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Pretrain T5""" from functools import partial from typing import Union import torch from megatron.training import ( get_args, get_timers, get_tokenizer, print_rank_0 ) from megatron.core import mpu, tensor_parallel from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder from megatron.core.datasets.t5_dataset import ( T5MaskedWordPieceDataset, T5MaskedWordPieceDatasetConfig, ) from megatron.core.enums import ModelType from megatron.core.models.T5 import T5Model from megatron.training import pretrain from megatron.training.arguments import core_transformer_config_from_args from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder from megatron.core.datasets.t5_dataset import T5MaskedWordPieceDataset, T5MaskedWordPieceDatasetConfig from megatron.core.datasets.utils import get_blend_from_list from megatron.core.models.T5.t5_spec import (get_t5_encoder_with_transformer_engine_block_spec, get_t5_decoder_with_transformer_engine_block_spec, get_t5_encoder_with_local_block_spec, get_t5_decoder_with_local_block_spec) from megatron.legacy.model import T5Model as LegacyT5Model """ Pipeline parallelism for T5 (Caveat: currently, mcore T5 model has not supported pipeline-parallelism) =========================== T5 is a model architecture with both encoder and decoder blocks. Consequently, pipeline parallelism is implemented slightly differently compared to architectures like GPT and BERT. In particular, when pipeline_model_parallel_world_size > 1, each stage either executes an encoder block or a decoder block. The --pipeline-model-parallel-split-rank argument controls the rank at which the split happens: all ranks lower than this argument execute the encoder block, and all ranks equal to or higher than this argument value execute the decoder block. In the encoder section of the model, only one tensor is sent downstream: the intermediate encoder_hidden_state. In the decoder section of the model, two tensors are sent downstream in the forward pass: the fully computed encoder_hidden_state, and the intermediate decoder_hidden_state. In particular, these are the shapes of the tensors sent between different workers: If rank is in decoder section: intermediate decoder_hidden_state (pre-transpose), complete encoder_hidden_state (post-transpose). If rank is at boundary between encoder and decoder sections: complete encoder_hidden_state (post-transpose). If rank is in encoder section: intermediate encoder_hidden_state (pre-transpose). Additionally, we have code in the backward_step function in schedules.py to accumulate the encoder_hidden_state gradient across skip connections (encoder_hidden_state fed in as input to each layer in the decoder). """ def model_provider( pre_process=True, post_process=True, add_encoder=True, add_decoder=True ) -> Union[LegacyT5Model, T5Model]: """Builds the model. Args: pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True. post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True. add_encoder (bool, optional): Defaults to True add_decoder (bool, optional): Defaults to True Returns: T5Model: The returned T5 model """ args = get_args() config = core_transformer_config_from_args(args) if args.use_legacy_models: model = LegacyT5Model( config=config, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process, add_encoder=add_encoder, add_decoder=add_decoder, ) else: if args.transformer_impl == "local": en_block_spec = get_t5_encoder_with_local_block_spec(args.encoder_num_layers) de_block_spec = get_t5_decoder_with_local_block_spec(args.decoder_num_layers) elif args.transformer_impl == "transformer_engine": en_block_spec = get_t5_encoder_with_transformer_engine_block_spec( args.encoder_num_layers ) de_block_spec = get_t5_decoder_with_transformer_engine_block_spec( args.decoder_num_layers ) print_rank_0('building T5 model ...') model = T5Model( config=config, transformer_encoder_layer_spec=en_block_spec, transformer_decoder_layer_spec=de_block_spec, vocab_size=args.padded_vocab_size, max_sequence_length=args.max_position_embeddings, pre_process=pre_process, post_process=post_process, fp16_lm_cross_entropy=args.fp16_lm_cross_entropy, parallel_output=True, share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights, position_embedding_type=args.position_embedding_type, rotary_percent=args.rotary_percent, ) return model def get_batch(data_iterator): """Build the batch.""" keys = ['text_enc', 'text_dec', 'labels', 'loss_mask', 'enc_mask', 'dec_mask', 'enc_dec_mask'] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = tensor_parallel.broadcast_data(keys, data, datatype) # Unpack. tokens_enc = data_b['text_enc'].long() tokens_dec = data_b['text_dec'].long() labels = data_b['labels'].long() loss_mask = data_b['loss_mask'].float() enc_mask = data_b['enc_mask'] < 0.5 dec_mask = data_b['dec_mask'] < 0.5 enc_dec_mask = data_b['enc_dec_mask'] < 0.5 return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor): """Loss function. Args: loss_mask (torch.Tensor): Used to mask out some portions of the loss output_tensor (torch.Tensor): The tensor with the losses Returns: the loss scalar for this micro-batch the number of non-padded tokens in this microbatch a dict containing reporting metrics on the loss and number of tokens across the data parallel ranks """ lm_loss_ = output_tensor.float() total_tokens = loss_mask.sum() lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) lm_loss = torch.cat([lm_loss.view(1), total_tokens.view(1)]) reporting_loss = lm_loss.clone().detach() torch.distributed.all_reduce(reporting_loss, group=mpu.get_data_parallel_group()) num_tokens = lm_loss[1].clone().detach().to(torch.int) return lm_loss[0], num_tokens, {'lm loss': (reporting_loss[0], reporting_loss[1])} def forward_step(data_iterator, model: T5Model): """Forward training step. Args: data_iterator : Input data iterator model (T5Model): The T5 Model """ args = get_args() timers = get_timers() # Get the batch. timers('batch generator', log_level=2).start() tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask = get_batch( data_iterator ) timers('batch generator').stop() # Forward model lm_labels output_tensor = model( tokens_enc, tokens_dec, enc_mask, dec_mask, enc_dec_mask, lm_labels=lm_labels ) return output_tensor, partial(loss_func, loss_mask) def train_valid_test_datasets_provider(train_val_test_num_samples: int): """Build the train test and validation datasets. Args: train_val_test_num_samples : A list containing the number of samples in train test and validation. """ args = get_args() tokenizer = get_tokenizer() config = T5MaskedWordPieceDatasetConfig( random_seed=args.seed, sequence_length=args.encoder_seq_length, sequence_length_decoder=args.decoder_seq_length, blend=get_blend_from_list(args.data_path), blend_per_split=[ get_blend_from_list(args.train_data_path), get_blend_from_list(args.valid_data_path), get_blend_from_list(args.test_data_path) ], split=args.split, path_to_cache=args.data_cache_path, tokenizer=tokenizer, masking_probability=args.mask_prob, short_sequence_probability=args.short_seq_prob, masking_max_ngram=10, masking_do_full_word=True, masking_do_permutation=False, masking_use_longer_ngrams=False, masking_use_geometric_distribution=True, ) print_rank_0('> building train, validation, and test datasets for T5 ...') train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder( T5MaskedWordPieceDataset, train_val_test_num_samples, lambda: mpu.get_tensor_model_parallel_rank() == 0, config, ).build() print_rank_0("> finished creating T5 datasets ...") return train_ds, valid_ds, test_ds if __name__ == "__main__": # Temporary for transition to core datasets train_valid_test_datasets_provider.is_distributed = True pretrain( train_valid_test_datasets_provider, model_provider, ModelType.encoder_and_decoder, forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}, )