# -*- coding: utf-8 -*- # @Author: Weisen Pan # Load necessary system modules for the job source /etc/profile.d/modules.sh module load gcc/11.2.0 # Load GCC compiler module load openmpi/4.1.3 # Load OpenMPI for distributed computing module load cuda/11.5/11.5.2 # Load CUDA for GPU acceleration module load cudnn/8.3/8.3.3 # Load cuDNN for deep learning frameworks module load nccl/2.11/2.11.4-1 # Load NCCL for multi-GPU communication module load python/3.10/3.10.4 # Load Python 3.10 environment # Activate the required Python virtual environment source ~/venv/pytorch1.11+horovod/bin/activate # Activate PyTorch 1.11 + Horovod environment # Define log directory and clean up any existing records before starting LOG_PATH="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}" # Set log path rm -rf ${LOG_PATH} # Remove any existing log directory mkdir -p ${LOG_PATH} # Create new log directory # Copy the dataset to the local temporary directory DATA_DIR="${SGE_LOCALDIR}/${JOB_ID}/" # Set the local directory for dataset cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${DATA_DIR} # Copy CIFAR-100 dataset to the local directory # Move to the directory containing the training scripts cd EdgeFLite # Change to EdgeFLite project directory # Start the federated learning training process with the specified parameters python run_gkt.py \ --is_fed=1 \ # Enable federated learning --fixed_cluster=0 \ # Use dynamic clustering --split_factor=1 \ # Set data split factor --num_clusters=20 \ # Set the number of clusters --num_selected=20 \ # Number of selected clients per round --arch="resnet_model_110sl" \ # Model architecture (ResNet 110 with single-layer output) --dataset="cifar100" \ # Dataset used (CIFAR-100) --num_classes=100 \ # Number of classes in the dataset --is_single_branch=0 \ # Enable multi-branch model --is_amp=0 \ # Disable automatic mixed precision --num_rounds=650 \ # Number of federated learning rounds --fed_epochs=1 \ # Number of local epochs per federated round --spid="FGKT_R110_20c_650r" \ # Experiment ID for logging and tracking --data=${DATA_DIR} # Specify the path to the dataset