Rename "parallelize" decorator to "concurrent"

It came to my attention when I was deciding whether or not to use the
jenkins_jobs.parallel.parallelize decorator to parallelize things in
jenkins_jobs.parser that because it is using the Python threading
library nothing is actually parallelized, only concurrentized (at least
for CPython).

I actually think concurrency is fine for the original use case since
that (ie, updating Jenkins jobs) is primarily I/O bound on network
connections to a Jenkins instance. However, the "parallel" name really
is misleading and could actually be harmful for users of this API who
may mistakenly have the impression that it can be used to speed up
CPU-bound tasks.

Also removes seemingly unnecessary usages of this decorator. ie,
jenkins_jobs.builder.Jenkins.changed that is never actually calle
with a list of arguments.

Change-Id: I996f9dea440e2d6b67ea70870d22942d6eef3ec7
This commit is contained in:
Wayne Warren 2016-06-22 22:43:19 -07:00 committed by Thanh Ha
parent 8c9c50b1f6
commit dfc0efb79c
No known key found for this signature in database
GPG Key ID: B0CB27E00DA095AA
3 changed files with 30 additions and 32 deletions

View File

@ -31,7 +31,7 @@ import yaml
import jenkins import jenkins
from jenkins_jobs.constants import MAGIC_MANAGE_STRING from jenkins_jobs.constants import MAGIC_MANAGE_STRING
from jenkins_jobs.parallel import parallelize from jenkins_jobs.parallel import concurrent
from jenkins_jobs import utils from jenkins_jobs import utils
@ -153,7 +153,6 @@ class Jenkins(object):
self._job_list = set(job['name'] for job in self.jobs) self._job_list = set(job['name'] for job in self.jobs)
return self._job_list return self._job_list
@parallelize
def update_job(self, job_name, xml): def update_job(self, job_name, xml):
if self.is_job(job_name): if self.is_job(job_name):
logger.info("Reconfiguring jenkins job {0}".format(job_name)) logger.info("Reconfiguring jenkins job {0}".format(job_name))
@ -274,7 +273,6 @@ class Builder(object):
# Need to clear the JJB cache after deletion # Need to clear the JJB cache after deletion
self.cache.clear() self.cache.clear()
@parallelize
def changed(self, job): def changed(self, job):
md5 = job.md5() md5 = job.md5()
@ -344,9 +342,9 @@ class Builder(object):
p_params = [{'job': job} for job in jobs] p_params = [{'job': job} for job in jobs]
results = self.parallel_update_job( results = self.parallel_update_job(
n_workers=n_workers, n_workers=n_workers,
parallelize=p_params) concurrent=p_params)
logging.debug("Parsing results") logging.debug("Parsing results")
# generalize the result parsing, as a parallelized job always returns a # generalize the result parsing, as a concurrent job always returns a
# list # list
if len(p_params) in (1, 0): if len(p_params) in (1, 0):
results = [results] results = [results]
@ -365,7 +363,7 @@ class Builder(object):
logging.debug("Total run took %ss", (time.time() - orig)) logging.debug("Total run took %ss", (time.time() - orig))
return jobs, len(jobs) return jobs, len(jobs)
@parallelize @concurrent
def parallel_update_job(self, job): def parallel_update_job(self, job):
self.jenkins.update_job(job.name, job.output().decode('utf-8')) self.jenkins.update_job(job.name, job.output().decode('utf-8'))
return (job.name, job.md5()) return (job.name, job.md5())

View File

@ -13,7 +13,7 @@
# License for the specific language governing permissions and limitations # License for the specific language governing permissions and limitations
# under the License. # under the License.
# Parallel execution helper functions and classes # Concurrent execution helper functions and classes
from functools import wraps from functools import wraps
import logging import logging
@ -66,30 +66,30 @@ class Worker(threading.Thread):
self.out_queue.put((task['ord'], res)) self.out_queue.put((task['ord'], res))
def parallelize(func): def concurrent(func):
@wraps(func) @wraps(func)
def parallelized(*args, **kwargs): def concurrentized(*args, **kwargs):
""" """
This function will spawn workers and run the decorated function in This function will spawn workers and run the decorated function
parallel on the workers. It will not ensure the thread safety of the concurrently on the workers. It will not ensure the thread safety of
decorated function (the decorated function should be thread safe by the decorated function (the decorated function should be thread safe by
itself). It accepts two special parameters: itself). It accepts two special parameters:
:arg list parallelize: list of the arguments to pass to each of the :arg list concurrentize: list of the arguments to pass to each of the
runs, the results of each run will be returned in the same order. runs, the results of each run will be returned in the same order.
:arg int n_workers: number of workers to use, by default and if '0' :arg int n_workers: number of workers to use, by default and if '0'
passed will autodetect the number of cores and use that, if '1' passed will autodetect the number of cores and use that, if '1'
passed, it will not use any workers and just run as if were not passed, it will not use any workers and just run as if were not
parallelized everything. concurrentized everything.
Example: Example:
> @parallelize > @concurrent
> def sample(param1, param2, param3): > def sample(param1, param2, param3):
> return param1 + param2 + param3 > return param1 + param2 + param3
> >
> sample('param1', param2='val2', > sample('param1', param2='val2',
> parallelize=[ > concurrent=[
> {'param3': 'val3'}, > {'param3': 'val3'},
> {'param3': 'val4'}, > {'param3': 'val4'},
> {'param3': 'val5'}, > {'param3': 'val5'},
@ -97,14 +97,14 @@ def parallelize(func):
> >
['param1val2val3', 'param1val2val4', 'param1val2val5'] ['param1val2val3', 'param1val2val4', 'param1val2val5']
This will run the function `parallelized_function` 3 times, in This will run the function `concurrentized_function` 3 times, in
parallel (depending on the number of detected cores) and return an concurrent (depending on the number of detected cores) and return an
array with the results of the executions in the same order the array with the results of the executions in the same order the
parameters were passed. parameters were passed.
""" """
n_workers = kwargs.pop('n_workers', 0) n_workers = kwargs.pop('n_workers', 0)
p_kwargs = kwargs.pop('parallelize', []) p_kwargs = kwargs.pop('concurrent', [])
# if only one parameter is passed inside the parallelize dict, run the # if only one parameter is passed inside the concurrent dict, run the
# original function as is, no need for pools # original function as is, no need for pools
if len(p_kwargs) == 1: if len(p_kwargs) == 1:
kwargs.update(p_kwargs[0]) kwargs.update(p_kwargs[0])
@ -115,7 +115,7 @@ def parallelize(func):
# If no number of workers passed or passed 0 # If no number of workers passed or passed 0
if not n_workers: if not n_workers:
n_workers = cpu_count() n_workers = cpu_count()
logging.debug("Running parallel %d workers", n_workers) logging.debug("Running concurrent %d workers", n_workers)
worker_pool = [] worker_pool = []
in_queue = queue.Queue() in_queue = queue.Queue()
out_queue = queue.Queue() out_queue = queue.Queue()
@ -146,6 +146,6 @@ def parallelize(func):
worker.join() worker.join()
# Reorder the results # Reorder the results
results = [r[1] for r in sorted(results)] results = [r[1] for r in sorted(results)]
logging.debug("Parallel task finished") logging.debug("Concurrent task finished")
return results return results
return parallelized return concurrentized

View File

@ -18,7 +18,7 @@ from multiprocessing import cpu_count
from testtools import matchers from testtools import matchers
from testtools import TestCase from testtools import TestCase
from jenkins_jobs.parallel import parallelize from jenkins_jobs.parallel import concurrent
from tests.base import mock from tests.base import mock
@ -26,45 +26,45 @@ class TestCaseParallel(TestCase):
def test_parallel_correct_order(self): def test_parallel_correct_order(self):
expected = list(range(10, 20)) expected = list(range(10, 20))
@parallelize @concurrent
def parallel_test(num_base, num_extra): def parallel_test(num_base, num_extra):
return num_base + num_extra return num_base + num_extra
parallel_args = [{'num_extra': num} for num in range(10)] parallel_args = [{'num_extra': num} for num in range(10)]
result = parallel_test(10, parallelize=parallel_args) result = parallel_test(10, concurrent=parallel_args)
self.assertThat(result, matchers.Equals(expected)) self.assertThat(result, matchers.Equals(expected))
def test_parallel_time_less_than_serial(self): def test_parallel_time_less_than_serial(self):
@parallelize @concurrent
def wait(secs): def wait(secs):
time.sleep(secs) time.sleep(secs)
before = time.time() before = time.time()
# ten threads to make it as fast as possible # ten threads to make it as fast as possible
wait(parallelize=[{'secs': 1} for _ in range(10)], n_workers=10) wait(concurrent=[{'secs': 1} for _ in range(10)], n_workers=10)
after = time.time() after = time.time()
self.assertThat(after - before, matchers.LessThan(5)) self.assertThat(after - before, matchers.LessThan(5))
def test_parallel_single_thread(self): def test_parallel_single_thread(self):
expected = list(range(10, 20)) expected = list(range(10, 20))
@parallelize @concurrent
def parallel_test(num_base, num_extra): def parallel_test(num_base, num_extra):
return num_base + num_extra return num_base + num_extra
parallel_args = [{'num_extra': num} for num in range(10)] parallel_args = [{'num_extra': num} for num in range(10)]
result = parallel_test(10, parallelize=parallel_args, n_workers=1) result = parallel_test(10, concurrent=parallel_args, n_workers=1)
self.assertThat(result, matchers.Equals(expected)) self.assertThat(result, matchers.Equals(expected))
@mock.patch('jenkins_jobs.parallel.cpu_count', wraps=cpu_count) @mock.patch('jenkins_jobs.parallel.cpu_count', wraps=cpu_count)
def test_use_auto_detect_cores(self, mockCpu_count): def test_use_auto_detect_cores(self, mockCpu_count):
@parallelize @concurrent
def parallel_test(): def parallel_test():
return True return True
result = parallel_test(parallelize=[{} for _ in range(10)], result = parallel_test(concurrent=[{} for _ in range(10)],
n_workers=0) n_workers=0)
self.assertThat(result, matchers.Equals([True for _ in range(10)])) self.assertThat(result, matchers.Equals([True for _ in range(10)]))
mockCpu_count.assert_called_once_with() mockCpu_count.assert_called_once_with()