update for devices
Change-Id: I64095946049555dd2eb82ac22f9bdae44aa398e9
This commit is contained in:
parent
064773fbd7
commit
7faee3d41d
@ -4,7 +4,7 @@ from scipy.optimize import linprog
|
||||
from scipy.stats import rankdata
|
||||
|
||||
def perform_evaluation(data_table, relative_wr_data, immediate_wr_data, node_names, node_ids):
|
||||
print("Evaluation begun with perform_evaluation():")
|
||||
# print("Evaluation begun with perform_evaluation():")
|
||||
# print("Data Table:", data_table)
|
||||
# Identify the boolean criteria columns by checking if all values are either 0 or 1
|
||||
# boolean_criteria = [criterion for criterion in data_table if set(data_table[criterion]) <= {0, 1}]
|
||||
|
@ -13,6 +13,46 @@ Boolean_Variables = [
|
||||
"8cd09fe9-c119-4ccd-b651-0f18334dbbe4", "7147995c-8e68-4106-ab24-f0a7673eb5f5", "c1c5b3c9-6178-4d67-a7e3-0285c2bf98ef"]
|
||||
|
||||
# Used to extract_SAL_node_candidate_data from Use Side for DataGrid
|
||||
# def extract_SAL_node_candidate_data_Front(json_data):
|
||||
# default_criteria_list = ["cores", "ram", "disk", "memoryPrice", "price"]
|
||||
#
|
||||
# if isinstance(json_data, dict): # Single node dictionary
|
||||
# json_data = [json_data] # Wrap it in a list
|
||||
#
|
||||
# extracted_data = []
|
||||
# node_ids = []
|
||||
# node_names = []
|
||||
#
|
||||
# for item in json_data:
|
||||
# hardware_info = item.get("hardware", {})
|
||||
# # Extract default criteria values
|
||||
# default_criteria_values = {criteria: hardware_info.get(criteria, 0.0) if criteria in hardware_info else item.get(criteria, 0.0) for criteria in default_criteria_list}
|
||||
#
|
||||
# # Correctly extract the providerName from the cloud information
|
||||
# cloud_info = item.get("cloud", {}) # get the cloud info or default to an empty dict
|
||||
# api_info = cloud_info.get("api", {})
|
||||
# provider_name = api_info.get("providerName", "Unknown Provider")
|
||||
#
|
||||
# # each item is now a dictionary
|
||||
# node_data = {
|
||||
# "nodeId": item.get("nodeId", ''),
|
||||
# "id": item.get('id', ''),
|
||||
# "nodeCandidateType": item.get("nodeCandidateType", ''),
|
||||
# **default_criteria_values, # Unpack default criteria values into node_data
|
||||
# "hardware": hardware_info,
|
||||
# "location": item.get("location", {}),
|
||||
# "image": item.get("image", {}),
|
||||
# "providerName": provider_name
|
||||
# }
|
||||
# extracted_data.append(node_data)
|
||||
# node_ids.append(node_data["id"])
|
||||
#
|
||||
# # print("Before create_node_name")
|
||||
# node_names.append(create_node_name(node_data)) # call create_node_name function
|
||||
# # print("After create_node_name")
|
||||
#
|
||||
# return extracted_data, node_ids, node_names
|
||||
|
||||
def extract_SAL_node_candidate_data_Front(json_data):
|
||||
default_criteria_list = ["cores", "ram", "disk", "memoryPrice", "price"]
|
||||
|
||||
@ -28,10 +68,15 @@ def extract_SAL_node_candidate_data_Front(json_data):
|
||||
# Extract default criteria values
|
||||
default_criteria_values = {criteria: hardware_info.get(criteria, 0.0) if criteria in hardware_info else item.get(criteria, 0.0) for criteria in default_criteria_list}
|
||||
|
||||
# Correctly extract the providerName from the cloud information
|
||||
cloud_info = item.get("cloud", {}) # get the cloud info or default to an empty dict
|
||||
node_type = item.get("nodeCandidateType", "")
|
||||
|
||||
# extract the providerName from the cloud information
|
||||
if node_type == "EDGE":
|
||||
provider_name = "-" # For "EDGE" type, set provider_name as "-"
|
||||
else:
|
||||
api_info = cloud_info.get("api", {})
|
||||
provider_name = api_info.get("providerName", "Unknown Provider")
|
||||
provider_name = api_info.get("providerName", "Unknown Provider") # For other types, fetch from api_info
|
||||
|
||||
# each item is now a dictionary
|
||||
node_data = {
|
||||
@ -53,6 +98,7 @@ def extract_SAL_node_candidate_data_Front(json_data):
|
||||
|
||||
return extracted_data, node_ids, node_names
|
||||
|
||||
|
||||
# Used to create node names for DataGrid
|
||||
def create_node_name(node_data):
|
||||
node_type = node_data.get("nodeCandidateType", "UNKNOWN_TYPE")
|
||||
@ -99,11 +145,12 @@ def create_node_name(node_data):
|
||||
# Used to extract_SAL_node_candidate_data from App Side working with Optimizer
|
||||
def extract_SAL_node_candidate_data(json_string):
|
||||
# print("Entered in extract_SAL_node_candidate_data")
|
||||
try:
|
||||
json_data = json.loads(json_string) # Ensure json_data is a list of dictionaries
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"Error parsing JSON: {e}")
|
||||
return [], 0, [], []
|
||||
json_data = json.loads(json_string)
|
||||
# try:
|
||||
# json_data = json.loads(json_string) # json_data is a list of dictionaries
|
||||
# except json.JSONDecodeError as e:
|
||||
# print(f"Error parsing JSON inside extract_SAL_node_candidate_data(): {e}")
|
||||
# return [], 0, [], []
|
||||
|
||||
extracted_data = []
|
||||
|
||||
@ -300,7 +347,6 @@ def convert_data_table(created_data_table):
|
||||
|
||||
return created_data_table
|
||||
|
||||
|
||||
# Used to Append "Score" and "Rank" for each node in SAL's response JSON
|
||||
def append_evaluation_results(sal_reply_body, scores_and_ranks):
|
||||
# Check if sal_reply_body is a string and convert it to a Python object
|
||||
@ -423,173 +469,14 @@ def random_value_based_on_type(data_type, criterion_info=None):
|
||||
return round(random.uniform(1, 100), 2)
|
||||
|
||||
|
||||
# Used to parse Patini's JSON
|
||||
def parse_device_info_from_file(file_path):
|
||||
# Used to parse Dummy JSON files for Review
|
||||
def read_json_file_as_string(file_path):
|
||||
try:
|
||||
with open(file_path, 'r') as file:
|
||||
json_data = json.load(file)
|
||||
device_names = []
|
||||
device_info = {
|
||||
'id': json_data['_id'],
|
||||
'name': json_data['name'], # Save the device name
|
||||
'deviceInfo': json_data['deviceInfo'],
|
||||
'creationDate': json_data['creationDate'],
|
||||
'lastUpdateDate': json_data['lastUpdateDate'],
|
||||
'status': json_data['status'],
|
||||
'metrics': {
|
||||
'cpu': json_data['metrics']['metrics']['cpu'],
|
||||
'uptime': json_data['metrics']['metrics']['uptime'],
|
||||
'disk': json_data['metrics']['metrics']['disk'],
|
||||
'ram': json_data['metrics']['metrics']['ram']
|
||||
}
|
||||
}
|
||||
|
||||
# Example of converting and handling ISODate strings, adjust accordingly
|
||||
device_info['creationDate'] = datetime.fromisoformat(device_info['creationDate'].replace("ISODate('", "").replace("')", ""))
|
||||
device_info['lastUpdateDate'] = datetime.fromisoformat(device_info['lastUpdateDate'].replace("ISODate('", "").replace("')", ""))
|
||||
device_info['creationDate'] = device_info['creationDate'].isoformat()
|
||||
device_info['lastUpdateDate'] = device_info['lastUpdateDate'].isoformat()
|
||||
|
||||
# Update the global device_names list
|
||||
device_names.append({'id': device_info['id'], 'name': device_info['name']})
|
||||
return device_names, device_info
|
||||
|
||||
|
||||
#---------------Read Application Data
|
||||
|
||||
# Used to read the saved Data of the Application ONLY for the Nodes returned by SAL
|
||||
# def read_application_data(app_id, sal_reply_body):
|
||||
# # Directory path and file path
|
||||
# app_dir = os.path.join("app_dirs", app_id)
|
||||
# file_path = os.path.join(app_dir, f"{app_id}_data.json")
|
||||
#
|
||||
# # Initialize variables to return in case of no data or an error
|
||||
# data_table, relative_wr_data, immediate_wr_data, node_names, node_ids = [], [], [], [], []
|
||||
# # Read data from SAL's reply
|
||||
# extracted_data_SAL, node_ids_SAL, node_names_SAL = extract_SAL_node_candidate_data(sal_reply_body)
|
||||
#
|
||||
# # Check if the file exists
|
||||
# if os.path.exists(file_path):
|
||||
# # Read and parse the JSON file
|
||||
# with open(file_path, 'r', encoding='utf-8') as f:
|
||||
# data = json.load(f)
|
||||
#
|
||||
# # Filter gridData based on Nodes returned by SAL
|
||||
# filtered_grid_data = [node for node in data.get('gridData', []) if node.get('id') in node_ids_SAL]
|
||||
#
|
||||
# if filtered_grid_data: # if there's at least 1 match
|
||||
# # Create a new JSON structure and call transform_grid_data_to_table
|
||||
# filtered_json_data = {
|
||||
# "gridData": filtered_grid_data,
|
||||
# "relativeWRData": relative_wr_data,
|
||||
# "immediateWRData": immediate_wr_data,
|
||||
# "nodeNames": [node.get('name') for node in filtered_grid_data],
|
||||
# "nodeIds": node_ids_SAL
|
||||
# }
|
||||
#
|
||||
# # Call transform_grid_data_to_table with the filtered JSON data
|
||||
# # data_table, _, _, node_names, _ = transform_grid_data_to_table(filtered_json_data)
|
||||
# data_table, relative_wr_data, immediate_wr_data, node_names, node_ids = transform_grid_data_to_table(filtered_json_data)
|
||||
# if not node_names:
|
||||
# node_names = node_ids
|
||||
#
|
||||
# else: # There is not any node id match - Proceed only with the nodes from SAL's reply
|
||||
# print("No matching node IDs found in the saved data. Proceed only with data from SAL")
|
||||
# selected_criteria = ["Number of CPU Cores", "Memory Size"]
|
||||
# field_mapping = create_criteria_mapping(selected_criteria, extracted_data_SAL)
|
||||
# data_table = create_data_table(selected_criteria, extracted_data_SAL, field_mapping)
|
||||
# # Assign relativeWRData and immediateWRData regardless of node ID matches
|
||||
# relative_wr_data = []
|
||||
# immediate_wr_data = []
|
||||
# node_ids = node_ids_SAL
|
||||
# node_names = node_ids
|
||||
# if not node_names_SAL:
|
||||
# node_names = node_ids
|
||||
# else:
|
||||
# print(f"No JSON file found for application ID {app_id}.")
|
||||
#
|
||||
# # Note: relative_wr_data and immediate_wr_data are returned regardless of the node IDs match
|
||||
# return data_table, relative_wr_data, immediate_wr_data, node_names, node_ids
|
||||
|
||||
|
||||
|
||||
#Used to create data table from SAL's response in app_side
|
||||
|
||||
# def read_application_data(app_id, sal_reply_body):
|
||||
# app_dir = os.path.join("app_dirs", app_id)
|
||||
# file_path = os.path.join(app_dir, f"{app_id}_data.json")
|
||||
# data_table, relative_wr_data, immediate_wr_data, node_names, node_ids = {}, [], [], [], []
|
||||
#
|
||||
# default_list_criteria_mapping = {
|
||||
# "Operating cost": "price",
|
||||
# "Memory Price": "memoryPrice",
|
||||
# "Number of CPU Cores": "cores",
|
||||
# "Memory Size": "ram",
|
||||
# "Storage Capacity": "disk"
|
||||
# }
|
||||
#
|
||||
# if isinstance(sal_reply_body, str):
|
||||
# try:
|
||||
# sal_reply_body = json.loads(sal_reply_body)
|
||||
# except json.JSONDecodeError as e:
|
||||
# print(f"Error parsing JSON: {e}")
|
||||
# return data_table, relative_wr_data, immediate_wr_data, node_names, node_ids
|
||||
#
|
||||
# if os.path.exists(file_path):
|
||||
# with open(file_path, 'r', encoding='utf-8') as f:
|
||||
# data = json.load(f)
|
||||
# selected_criteria = {criterion['title']: criterion for criterion in data.get('selectedCriteria', [])}
|
||||
#
|
||||
# for criterion in selected_criteria.keys():
|
||||
# data_table[criterion] = []
|
||||
#
|
||||
# matched_node_ids = set(node['id'] for node in data.get('gridData', [])) & set(node['id'] for node in sal_reply_body)
|
||||
# unmatched_node_ids = set(node['id'] for node in sal_reply_body) - matched_node_ids
|
||||
#
|
||||
# # Ordinal value mapping for MATCHED nodes
|
||||
# ordinal_value_mapping = {"High": 3, "Medium": 2, "Low": 1}
|
||||
#
|
||||
# # Process MATCHED nodes from JSON file
|
||||
# for node in data.get('gridData', []):
|
||||
# if node['id'] in matched_node_ids:
|
||||
# node_ids.append(node['id'])
|
||||
# # node_names.append(node.get('name', 'Unknown'))
|
||||
# for criterion, crit_info in selected_criteria.items():
|
||||
# value = next((c['value'] for c in node['criteria'] if c['title'] == criterion), None)
|
||||
# if value is not None:
|
||||
# value = 1 if value is True else (0 if value is False else value)
|
||||
# else: # Apply default if criterion not found
|
||||
# value = 0.00001 if crit_info['type'] == 2 else 0
|
||||
# data_table[criterion].append(value)
|
||||
#
|
||||
# # Process UNMATCHED nodes from sal_reply_body
|
||||
# for node_id in unmatched_node_ids:
|
||||
# node_data = next((node for node in sal_reply_body if node['id'] == node_id), {})
|
||||
# node_ids.append(node_id)
|
||||
# for criterion, crit_info in selected_criteria.items():
|
||||
# mapped_field = default_list_criteria_mapping.get(criterion, '')
|
||||
# value = node_data.get(mapped_field, 0.00001 if crit_info['type'] == 2 else False)
|
||||
# value = 1 if value is True else (0 if value is False else value)
|
||||
# data_table[criterion].append(value)
|
||||
#
|
||||
# # convert True/False to 1/0 in data_table for both boolean and string representations
|
||||
# for criterion, values in data_table.items():
|
||||
# data_table[criterion] = [convert_bool(value) for value in values]
|
||||
# node_names = node_ids
|
||||
# relative_wr_data, immediate_wr_data = data.get('relativeWRData', []), data.get('immediateWRData', [])
|
||||
#
|
||||
# else: # There is not any node id match - Proceed only with the nodes from SAL's reply
|
||||
# print(f"No JSON file found for application ID {app_id}. Proceed only with data from SAL.")
|
||||
# extracted_data_SAL, node_ids_SAL, node_names_SAL = extract_SAL_node_candidate_data(sal_reply_body)
|
||||
# selected_criteria = ["Number of CPU Cores", "Memory Size"]
|
||||
# field_mapping = create_criteria_mapping(selected_criteria, extracted_data_SAL)
|
||||
# data_table = create_data_table(selected_criteria, extracted_data_SAL, field_mapping)
|
||||
# # Assign relativeWRData and immediateWRData regardless of node ID matches
|
||||
# relative_wr_data = []
|
||||
# immediate_wr_data = []
|
||||
# node_ids = node_ids_SAL
|
||||
# node_names = node_ids
|
||||
#
|
||||
# return data_table, relative_wr_data, immediate_wr_data, node_names, node_ids
|
||||
return file.read()
|
||||
except Exception as e:
|
||||
print(f"Error reading JSON file: {e}")
|
||||
return None
|
||||
|
||||
|
||||
# Used to transform SAL's response before sending to DataGrid
|
||||
@ -628,89 +515,3 @@ def extract_node_candidate_data(json_file_path):
|
||||
|
||||
return extracted_data, node_ids, node_names
|
||||
|
||||
|
||||
# Works for dummy_node_data
|
||||
# def create_node_name(node_data):
|
||||
# # dummy_node_data = '''{
|
||||
# # "id": "8a7481d98e702b64018e702cbe070000",
|
||||
# # "nodeCandidateType": "EDGE",
|
||||
# # "jobIdForByon": null,
|
||||
# # "jobIdForEdge": "FCRnewLight0",
|
||||
# # "price": 0.0,
|
||||
# # "cloud": {
|
||||
# # "id": "edge",
|
||||
# # "endpoint": null,
|
||||
# # "cloudType": "EDGE",
|
||||
# # "api": null,
|
||||
# # "credential": null,
|
||||
# # "cloudConfiguration": {
|
||||
# # "nodeGroup": null,
|
||||
# # "properties": {}
|
||||
# # },
|
||||
# # "owner": "EDGE",
|
||||
# # "state": null,
|
||||
# # "diagnostic": null
|
||||
# # },
|
||||
# # "location": {
|
||||
# # "id": "edge-location-KmVf4xDJKL7acBGc",
|
||||
# # "name": null,
|
||||
# # "providerId": null,
|
||||
# # "locationScope": null,
|
||||
# # "isAssignable": null,
|
||||
# # "geoLocation": {
|
||||
# # "city": "Warsaw",
|
||||
# # "country": "Poland",
|
||||
# # "latitude": 52.237049,
|
||||
# # "longitude": 21.017532
|
||||
# # },
|
||||
# # "parent": null,
|
||||
# # "state": null,
|
||||
# # "owner": null
|
||||
# # },
|
||||
# # "image": {
|
||||
# # "id": "edge-image-KmVf4xDJKL7acBGc",
|
||||
# # "name": "edge-image-name-UBUNTU-UNKNOWN",
|
||||
# # "providerId": null,
|
||||
# # "operatingSystem": {
|
||||
# # "operatingSystemFamily": "UBUNTU",
|
||||
# # "operatingSystemArchitecture": "UNKNOWN",
|
||||
# # "operatingSystemVersion": 1804.00
|
||||
# # },
|
||||
# # "location": null,
|
||||
# # "state": null,
|
||||
# # "owner": null
|
||||
# # },
|
||||
# # "hardware": {
|
||||
# # "id": "edge-hardware-KmVf4xDJKL7acBGc",
|
||||
# # "name": null,
|
||||
# # "providerId": null,
|
||||
# # "cores": 1,
|
||||
# # "ram": 1,
|
||||
# # "disk": 1.0,
|
||||
# # "fpga": 0,
|
||||
# # "location": null,
|
||||
# # "state": null,
|
||||
# # "owner": null
|
||||
# # },
|
||||
# # "pricePerInvocation": 0.0,
|
||||
# # "memoryPrice": 0.0,
|
||||
# # "nodeId": null,
|
||||
# # "environment": null
|
||||
# # }'''
|
||||
# # node_data = json.loads(dummy_node_data)
|
||||
# # print("node_data in create node name")
|
||||
# # print(node_data)
|
||||
# node_type = node_data["nodeCandidateType"]
|
||||
# # print(node_type)
|
||||
# if node_data["location"]:
|
||||
# node_location = node_data["location"]["geoLocation"]
|
||||
# # print(json.dumps(node_location))
|
||||
# node_city = node_location["city"]
|
||||
# node_country = node_location["country"]
|
||||
# else:
|
||||
# node_city = ""
|
||||
# node_country = ""
|
||||
# node_os = node_data["image"]["operatingSystem"]["operatingSystemFamily"]
|
||||
# node_name = node_type + " - " + node_city + " , " + node_country + " - " + node_os
|
||||
# # print("node name crated: " + node_name)
|
||||
# return node_name
|
@ -31,14 +31,12 @@ class SyncedHandler(Handler):
|
||||
# if address == "topic://eu.nebulouscloud.cfsb.get_node_candidates":
|
||||
if key == "OPT-triggering":
|
||||
# logging.info("Entered in OPT-triggering'")
|
||||
|
||||
# Save the correlation_id (We do not have it from the app_side)
|
||||
uuid.uuid4().hex.encode("utf-8") # for Correlation id
|
||||
correlation_id_optimizer = message.correlation_id
|
||||
if not correlation_id_optimizer:
|
||||
correlation_id_optimizer = '88334290cad34ad9b21eb468a9f8ff11' # dummy correlation_id
|
||||
|
||||
# logging.info(f"Optimizer_correlation_id {message.correlation_id}")
|
||||
# print("Optimizer Correlation Id: ", correlation_id_optimizer)
|
||||
|
||||
# application_id_optimizer = message.properties.application # can be taken also from message.annotations.application
|
||||
@ -47,44 +45,55 @@ class SyncedHandler(Handler):
|
||||
# print("Application Id: ", application_id_optimizer)
|
||||
|
||||
try:
|
||||
# Read the Message Sent from Optimizer
|
||||
###--- For Review, use ONLY ONE block, Optimizer's body or Dummy body ----------------------###
|
||||
|
||||
###-------- Extract body from Optimizer's message --------###
|
||||
## Read the Message Sent from Optimizer
|
||||
opt_message_data = body
|
||||
# print("Whole Message Sent from Optimizer:", opt_message_data)
|
||||
|
||||
# Extract 'body' from opt_message_data
|
||||
## Extract 'body' from opt_message_data
|
||||
body_sent_from_optimizer = opt_message_data.get('body', {})
|
||||
body_json_string = body_sent_from_optimizer
|
||||
###-------- Extract body from Optimizer's message --------###
|
||||
|
||||
## Example body
|
||||
###-------- Dummy body for DEMO when we emulate the message sent from Optimizer--------###
|
||||
# body_sent_from_optimizer = [
|
||||
# {
|
||||
# "type": "NodeTypeRequirement",
|
||||
# # "nodeTypes": ["EDGES"]
|
||||
# "nodeTypes": ["IAAS", "PAAS", "FAAS", "BYON", "EDGE", "SIMULATION"]
|
||||
# # "nodeTypes": ["EDGES"]
|
||||
# # ,"jobIdForEDGE": "FCRnewLight0"
|
||||
# }
|
||||
# # ,{
|
||||
# # "type": "AttributeRequirement",
|
||||
# # "requirementClass": "hardware",
|
||||
# # "requirementAttribute": "cores",
|
||||
# # "requirementOperator": "GEQ",
|
||||
# # "value": "64"
|
||||
# # }
|
||||
# # ,{
|
||||
# # "type": "AttributeRequirement",
|
||||
# # "requirementClass": "hardware",
|
||||
# # "requirementAttribute": "ram",
|
||||
# # "requirementOperator": "EQ",
|
||||
# # "value": "2"
|
||||
# # "requirementOperator": "GEQ",
|
||||
# # "value": "131072"
|
||||
# # }
|
||||
# ]
|
||||
|
||||
# logging.info(body_sent_from_optimizer)
|
||||
# body_json_string = json.dumps(body_sent_from_optimizer) # Convert the body data to a JSON string
|
||||
###-------- Dummy body for DEMO when we emulate the message sent from Optimizer--------###
|
||||
|
||||
###--- For Review, use ONLY ONE block, Optimizer's body or dummy body ----------------------###
|
||||
|
||||
print("-------------------------------------------------")
|
||||
print("Extracted body from Optimizer Message:", body_sent_from_optimizer)
|
||||
|
||||
## Prepare message to be send to SAL
|
||||
# Convert the body data to a JSON string
|
||||
# body_json_string = json.dumps(body_sent_from_optimizer) # For Sender
|
||||
body_json_string = body_sent_from_optimizer # For Optimizer
|
||||
|
||||
RequestToSal = { # Dictionary
|
||||
"metaData": {"user": "admin"}, # key [String "metaData"] value [dictionary]
|
||||
"body": body_json_string # key [String "body"] value [JSON String]
|
||||
}
|
||||
# logging.info("RequestToSal: %s", RequestToSal)
|
||||
# print("RequestToSal:", RequestToSal)
|
||||
print("Request to SAL:", RequestToSal)
|
||||
# print("Is RequestToSal a valid dictionary:", isinstance(RequestToSal, dict))
|
||||
# print("Is the 'body' string in RequestToSal a valid JSON string:", is_json(RequestToSal["body"]))
|
||||
|
||||
@ -99,22 +108,21 @@ class SyncedHandler(Handler):
|
||||
nodes_data = json.loads(sal_body)
|
||||
# Check if there is any error in SAL's reply body
|
||||
if 'key' in nodes_data and any(keyword in nodes_data['key'].lower() for keyword in ['error', 'exception']):
|
||||
print("Error found in message body:", nodes_data['message'])
|
||||
print("Error found in SAL's message body:", nodes_data['message'])
|
||||
sal_reply_body = []
|
||||
else: # No error found in SAL's reply body
|
||||
total_nodes = len(nodes_data) # Get the total number of nodes
|
||||
print("Total Nodes in SAL's reply:", total_nodes)
|
||||
# print("Total Nodes in SAL's reply:", total_nodes)
|
||||
|
||||
if total_nodes > 400: # Check if more than 400 nodes received
|
||||
print("More than 400 nodes returned from SAL.")
|
||||
# print("More than 400 nodes returned from SAL.")
|
||||
# Filter to only include the first 400 nodes and convert back to JSON string
|
||||
sal_reply_body = json.dumps(nodes_data[:400])
|
||||
elif total_nodes > 0 and total_nodes <= 400:
|
||||
print(f"Total {total_nodes} nodes returned from SAL. Processing all nodes.")
|
||||
# print(f"Total {total_nodes} nodes returned from SAL. Processing all nodes.")
|
||||
# Keep sal_reply_body as is since it's already a JSON string
|
||||
sal_reply_body = sal_body
|
||||
else:
|
||||
print(f"Total {total_nodes} nodes returned from SAL.")
|
||||
sal_reply_body = []
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
@ -122,7 +130,6 @@ class SyncedHandler(Handler):
|
||||
sal_reply_body = [] # Default to an empty JSON array as a string in case of error
|
||||
|
||||
if sal_reply_body: # Check whether SAL's reply body is empty
|
||||
# logging.info(f"Reply Received from SAL: {sal_reply}")
|
||||
# print("SAL reply Body:", sal_reply_body)
|
||||
|
||||
# Check the number of nodes before Evaluation
|
||||
@ -130,20 +137,32 @@ class SyncedHandler(Handler):
|
||||
# Search for application_id, Read JSON and create data to pass to Evaluation
|
||||
if check_json_file_exists(application_id_optimizer): # Application JSON exist in DB
|
||||
print(f"JSON file for application ID {application_id_optimizer} exists.")
|
||||
|
||||
###-------- Extract data from dummy JSON file --------###
|
||||
# json_file_path = 'dummySALresponse.json'
|
||||
# sal_reply_body = read_json_file_as_string(json_file_path)
|
||||
###-------- Extract data from dummy JSON file --------###
|
||||
|
||||
# Check if there are differences in available nodes between saved data in JSON file and SAL's reply
|
||||
data_table, relative_wr_data, immediate_wr_data, node_names, node_ids = read_application_data(application_id_optimizer, sal_reply_body)
|
||||
# print("sal_reply_body:", sal_reply_body)
|
||||
# print("data_table filtered from JSON and SAL:", data_table)
|
||||
# print("node_ids filtered from JSON and SAL:", node_ids)
|
||||
# print("relative_wr_data:", relative_wr_data)
|
||||
# print("immediate_wr_data:", immediate_wr_data)
|
||||
# print("node_names filtered from JSON and SAL:", node_names)
|
||||
|
||||
else: # Application does not exist in directory
|
||||
print(f"JSON file for application ID {application_id_optimizer} does not exist.")
|
||||
# Read data from SAL's response by calling the function extract_node_candidate_data()
|
||||
# extracted_data_SAL, node_ids, node_names = extract_node_candidate_data('SAL_Response_11EdgeDevs.json')
|
||||
# print(f"JSON file for application ID {application_id_optimizer} does not exist.")
|
||||
|
||||
###-------- Extract data from SAL's response --------###
|
||||
# Extract data from SAL's response
|
||||
extracted_data_SAL, node_ids, node_names = extract_SAL_node_candidate_data(sal_reply_body)
|
||||
###-------- Extract data from SAL's response --------###
|
||||
|
||||
###-------- Extract data from dummy JSON file --------###
|
||||
# json_file_path = 'dummySALresponse.json'
|
||||
# sal_reply_body = read_json_file_as_string(json_file_path)
|
||||
# if sal_reply_body:
|
||||
# extracted_data_SAL, node_ids, node_names = extract_SAL_node_candidate_data(sal_reply_body)
|
||||
###-------- Extract data from dummy JSON file --------###
|
||||
|
||||
|
||||
# print("extracted_data_SAL:", extracted_data_SAL)
|
||||
# print("node_ids:", node_ids)
|
||||
|
||||
@ -155,27 +174,29 @@ class SyncedHandler(Handler):
|
||||
data_table = create_data_table(selected_criteria, extracted_data_SAL, field_mapping)
|
||||
relative_wr_data = []
|
||||
immediate_wr_data = []
|
||||
# print("created_data_table:", data_table)
|
||||
|
||||
|
||||
# Check the number of nodes before Evaluation
|
||||
print("There are " + str(len(node_ids)) + " nodes for Evaluation")
|
||||
|
||||
# Convert the original data of RAM and # of Cores, e.g. 1/X, if they are selected
|
||||
print("Original created_data_table:", data_table)
|
||||
# Convert RAM and Cores
|
||||
data_table = convert_data_table(data_table)
|
||||
data_table = convert_data_table(data_table) # Convert RAM and # of Cores, e.g. 1/X
|
||||
print("Converted created_data_table:", data_table)
|
||||
|
||||
## Run evaluation
|
||||
evaluation_results = perform_evaluation(data_table, relative_wr_data, immediate_wr_data, node_names, node_ids)
|
||||
# print("Evaluation Results:", evaluation_results)
|
||||
|
||||
## Extract and save the results
|
||||
## Extract and Save the Results
|
||||
# ScoresAndRanks = evaluation_results['results']
|
||||
ScoresAndRanks = evaluation_results.get('results', [])
|
||||
# print("Scores and Ranks:", ScoresAndRanks)
|
||||
print("Scores and Ranks:", ScoresAndRanks)
|
||||
|
||||
# Append the Score and Rank of each node to SAL's Response
|
||||
SAL_and_Scores_Body = append_evaluation_results(sal_reply_body, ScoresAndRanks)
|
||||
# print("SAL_and_Scores_Body:", SAL_and_Scores_Body)
|
||||
|
||||
else:
|
||||
print("There is only one node!")
|
||||
# Append the Score and Rank of each node to SAL's Response
|
||||
@ -193,7 +214,7 @@ class SyncedHandler(Handler):
|
||||
formatted_json = json.dumps(CFSBResponse, indent=4)
|
||||
with open('CFSBResponse.json', 'w') as file:
|
||||
file.write(formatted_json)
|
||||
print("Formatted JSON has been saved to CFSBResponse.json")
|
||||
print("Data with Scores and Ranks for Nodes are saved to CFSBResponse.json")
|
||||
|
||||
else: # Then SAL's reply body is empty send an empty body to Optimizer
|
||||
print("No Body in reply from SAL!")
|
||||
@ -205,12 +226,13 @@ class SyncedHandler(Handler):
|
||||
|
||||
## Send message to OPTIMIZER
|
||||
context.get_publisher('SendToOPT').send(CFSBResponse, application_id_optimizer, properties={'correlation_id': correlation_id_optimizer}, raw=True)
|
||||
print("Message to Optimizer has been sent")
|
||||
print("-------------------------------------------------")
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logging.error(f"Failed to parse message body from Optimizer as JSON: {e}")
|
||||
|
||||
|
||||
|
||||
def requestSAL(self, RequestToSal):
|
||||
sal_reply = Context.publishers['SAL-GET'].send_sync(RequestToSal)
|
||||
# Process SAL's Reply
|
||||
@ -277,4 +299,3 @@ def is_json(myjson):
|
||||
except TypeError as e: # includes simplejson.decoder.JSONDecodeError
|
||||
return False
|
||||
return True
|
||||
|
||||
|
@ -10,7 +10,7 @@ import get_data as file
|
||||
import activemq
|
||||
import traceback
|
||||
import logging
|
||||
# logging.disable(logging.CRITICAL)
|
||||
logging.disable(logging.CRITICAL)
|
||||
|
||||
main_routes = Blueprint('main', __name__)
|
||||
|
||||
@ -20,85 +20,6 @@ NoData_Variables = ['attr-security', 'attr-performance-capacity', 'attr-performa
|
||||
Cont_Variables = ['attr-performance', 'attr-financial', 'attr-performance-capacity-memory',
|
||||
'attr-performance-capacity-memory-speed']
|
||||
|
||||
dummy_node_data = {
|
||||
"id": "8a7481d98e702b64018e702cbe070000",
|
||||
"nodeCandidateType": "EDGE",
|
||||
"jobIdForByon": "",
|
||||
"jobIdForEdge": "FCRnewLight0",
|
||||
"price": 0.0,
|
||||
"cloud": {
|
||||
"id": "edge",
|
||||
"endpoint": "",
|
||||
"cloudType": "EDGE",
|
||||
"api": "",
|
||||
"credential": "",
|
||||
"cloudConfiguration": {
|
||||
"nodeGroup": "",
|
||||
"properties": {}
|
||||
},
|
||||
"owner": "EDGE",
|
||||
"state": "",
|
||||
"diagnostic": ""
|
||||
},
|
||||
"location": {
|
||||
"id": "edge-location-KmVf4xDJKL7acBGc",
|
||||
"name": "",
|
||||
"providerId": "",
|
||||
"locationScope": "",
|
||||
"isAssignable": "",
|
||||
"geoLocation": {
|
||||
"city": "Warsaw",
|
||||
"country": "Poland",
|
||||
"latitude": 52.237049,
|
||||
"longitude": 21.017532
|
||||
},
|
||||
"parent": "",
|
||||
"state": "",
|
||||
"owner": ""
|
||||
},
|
||||
"image": {
|
||||
"id": "edge-image-KmVf4xDJKL7acBGc",
|
||||
"name": "edge-image-name-UBUNTU-UNKNOWN",
|
||||
"providerId": "",
|
||||
"operatingSystem": {
|
||||
"operatingSystemFamily": "UBUNTU",
|
||||
"operatingSystemArchitecture": "UNKNOWN",
|
||||
"operatingSystemVersion": 1804.00
|
||||
},
|
||||
"location": "",
|
||||
"state": "",
|
||||
"owner": ""
|
||||
},
|
||||
"hardware": {
|
||||
"id": "edge-hardware-KmVf4xDJKL7acBGc",
|
||||
"name": "",
|
||||
"providerId": "",
|
||||
"cores": 1,
|
||||
"ram": 1,
|
||||
"disk": 1.0,
|
||||
"fpga": 0,
|
||||
"location": "",
|
||||
"state": "",
|
||||
"owner": ""
|
||||
},
|
||||
"pricePerInvocation": 0.0,
|
||||
"memoryPrice": 0.0,
|
||||
"nodeId": "",
|
||||
"environment": ""
|
||||
}
|
||||
|
||||
|
||||
#Used in HomePage.vue to save app_id and user_id
|
||||
# @main_routes.route('/save_ids', methods=['POST'])
|
||||
# def save_ids():
|
||||
# data = request.json
|
||||
# app_id = data.get('app_id')
|
||||
# user_id = data.get('user_id')
|
||||
# print("user_id:", user_id)
|
||||
# # Respond back with a success message
|
||||
# return jsonify({"message": "IDs received successfully.", "app_id": app_id, "user_id": user_id})
|
||||
|
||||
|
||||
|
||||
#Used in CriteriaSelection.vue
|
||||
@main_routes.route('/get_hierarchical_category_list')
|
||||
@ -115,45 +36,70 @@ def get_hierarchical_category_list():
|
||||
@main_routes.route('/process_selected_criteria', methods=['POST'])
|
||||
def process_selected_criteria():
|
||||
try:
|
||||
# Get selected criteria app_id and user_id sent from Frontend
|
||||
data = request.json
|
||||
selected_criteria = data.get('selectedItems', [])
|
||||
print("-------------------------------------------------")
|
||||
|
||||
# application_id = data.get('app_id')
|
||||
# user_id = data.get('user_id')
|
||||
# print("user_id:", user_id)
|
||||
# print("application_id:", application_id)
|
||||
# Get app_id and user_id already obtained in the Frontend from URL
|
||||
application_id = data.get('app_id')
|
||||
user_id = data.get('user_id')
|
||||
print("user_id:", user_id)
|
||||
print("application_id:", application_id)
|
||||
|
||||
message_for_SAL = [{
|
||||
# Prepare message to be sent to SAL
|
||||
message_for_SAL = [
|
||||
{
|
||||
"type": "NodeTypeRequirement",
|
||||
"nodeTypes": ["IAAS", "PAAS", "FAAS", "BYON", "EDGE", "SIMULATION"]}
|
||||
# ,{
|
||||
# "type": "AttributeRequirement",
|
||||
# "requirementClass": "hardware",
|
||||
# "requirementAttribute": "cores",
|
||||
# "requirementOperator": "GEQ",
|
||||
# "value": "64"
|
||||
# },
|
||||
# {
|
||||
# "type": "AttributeRequirement",
|
||||
# "requirementClass": "hardware",
|
||||
# "requirementAttribute": "ram",
|
||||
# "requirementOperator": "GEQ",
|
||||
# "value": "33000"
|
||||
# }
|
||||
"nodeTypes": ["IAAS", "PAAS", "FAAS", "BYON", "EDGE", "SIMULATION"],
|
||||
#"nodeTypes": ["EDGE"],
|
||||
"jobIdForEDGE": ""
|
||||
#"jobIdForEDGE": "FCRnewLight0"
|
||||
}
|
||||
]
|
||||
|
||||
body_json_string_for_SAL = json.dumps(message_for_SAL)
|
||||
|
||||
RequestToSal = {
|
||||
"metaData": {"user": "admin"},
|
||||
"body": body_json_string_for_SAL
|
||||
}
|
||||
# print("RequestToSal:", RequestToSal)
|
||||
print("Request to Sal:", RequestToSal)
|
||||
|
||||
sal_reply = activemq.call_publisher(RequestToSal)
|
||||
# Parse the JSON string to a Python object
|
||||
nodes_data = json.loads(sal_reply) if isinstance(sal_reply, str) else sal_reply
|
||||
# print("nodes_data", nodes_data)
|
||||
print("nodes_data", nodes_data)
|
||||
|
||||
# Check if there is any error in SAL's reply body
|
||||
if 'key' in nodes_data and any(keyword in nodes_data['key'].lower() for keyword in ['error', 'exception']):
|
||||
messageToDataGrid = "Error in SAL's reply" + nodes_data['message']
|
||||
print("Error found in SAL's message body:", messageToDataGrid)
|
||||
node_names = []
|
||||
grid_data_with_names = []
|
||||
else: # No error found in SAL's reply body
|
||||
|
||||
###--- For Review, use ONLY ONE block, SAL's response or JSON file ----------------------###
|
||||
|
||||
###-------- Extract data from SAL's response --------###
|
||||
print("Use of SAL's response")
|
||||
extracted_data, node_ids, node_names = extract_SAL_node_candidate_data_Front(nodes_data)
|
||||
print("SAL's extracted_data: ", extracted_data)
|
||||
###-------- Extract data from SAL's response --------###
|
||||
|
||||
|
||||
###-------- Extract data from dummy JSON file --------###
|
||||
# print("Use of dummy JSON file")
|
||||
# json_file_path = 'dummySALresponse.json'
|
||||
# jsondata = read_json_file_as_string(json_file_path)
|
||||
# nodes_data = json.loads(jsondata)
|
||||
# if nodes_data:
|
||||
# extracted_data, node_ids, node_names = extract_SAL_node_candidate_data_Front(nodes_data)
|
||||
###-------- Extract data from dummy JSON file --------###
|
||||
|
||||
###--- For Review, use ONLY ONE block, SAL's response or JSON file ----------------------###
|
||||
|
||||
|
||||
# print("extracted_data:", extracted_data)
|
||||
field_mapping = create_criteria_mapping()
|
||||
# print("field_mapping", field_mapping)
|
||||
@ -221,9 +167,10 @@ def process_selected_criteria():
|
||||
'criteria': data["criteria"]
|
||||
} for node_id, data in grid_data.items()]
|
||||
# print("grid_data_with_names:", grid_data_with_names)
|
||||
messageToDataGrid = "True"
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'success': messageToDataGrid,
|
||||
'gridData': grid_data_with_names,
|
||||
'NodeNames': node_names
|
||||
})
|
||||
@ -233,79 +180,8 @@ def process_selected_criteria():
|
||||
return jsonify({'success': False, 'error': str(e)}), 500
|
||||
|
||||
|
||||
# Works by reading a JSON file with dummy data
|
||||
# def process_selected_criteria():
|
||||
# try:
|
||||
# data = request.json
|
||||
# # Selected Criteria by the User from the List
|
||||
# selected_criteria = data.get('selectedItems', [])
|
||||
# # Extract app_id, user_id
|
||||
# application_id = data.get('app_id') # Take it from local storage from frontend
|
||||
# # application_id = 'd535cf554ea66fbebfc415ac837a5828' #dummy application_id_optimizer
|
||||
# user_id = data.get('user_id') # Take it from local storage from frontend
|
||||
# print("user_id:", user_id)
|
||||
# print("application_id:", application_id)
|
||||
#
|
||||
# ## Process SAL's Reply
|
||||
# # extracted_data, number_of_nodes, node_names = extract_node_candidate_data('dummy_data_node_candidates.json')
|
||||
# extracted_data, node_ids, node_names = extract_node_candidate_data('SAL_Response_11EdgeDevs.json')
|
||||
# print("extracted_data:", extracted_data)
|
||||
#
|
||||
# # Use the create_criteria_mapping() to get the criteria mappings
|
||||
# field_mapping = create_criteria_mapping(selected_criteria, extracted_data)
|
||||
# grid_data = {name: [] for name in node_names}
|
||||
#
|
||||
# # Prepare the data to be sent to DataGrid.vue
|
||||
# for node_data in extracted_data:
|
||||
# node_name = node_data.get('name') # Using name to match
|
||||
# node_id = node_data.get('id') # Extract the node ID
|
||||
# grid_data[node_name] = {"id": node_id, "criteria": []}
|
||||
#
|
||||
# if node_name in grid_data: # Check if node_name exists in grid_data keys
|
||||
# for item in selected_criteria:
|
||||
# criterion_data = {}
|
||||
# criterion_data["data_type"] = get_attr_data_type(item)
|
||||
# item_data_dict = file.get_subject_data(file.SMI_prefix + item)
|
||||
# criterion_data["title"] = item_data_dict["title"]
|
||||
# field_name = field_mapping.get(criterion_data["title"], item)
|
||||
#
|
||||
# # Check if the field_name is a direct key or nested inside 'hardware'
|
||||
# if field_name in node_data:
|
||||
# value = node_data[field_name]
|
||||
# elif 'hardware' in node_data and field_name in node_data['hardware']:
|
||||
# value = node_data['hardware'][field_name]
|
||||
# else:
|
||||
# # Generate random or default values for unmapped criteria or missing data
|
||||
# item_data_type_value = criterion_data["data_type"].get('type')
|
||||
# if item_data_type_value == 1:
|
||||
# value = random.choice(["High", "Medium", "Low"])
|
||||
# elif item_data_type_value == 5:
|
||||
# value = random.choice(["True", "False"])
|
||||
# else:
|
||||
# value = round(random.uniform(1, 100), 2)
|
||||
#
|
||||
# criterion_data["value"] = value if value != 0 else 0.00001
|
||||
# # grid_data[node_id].append(criterion_data)
|
||||
# grid_data[node_name]["criteria"].append(criterion_data)
|
||||
#
|
||||
# # Conversion to list format remains unchanged
|
||||
# # grid_data_with_names = [{'name': name, 'criteria': data} for name, data in grid_data.items()]
|
||||
# grid_data_with_names = [{'name': name, 'id': data["id"], 'criteria': data["criteria"]} for name, data in grid_data.items()]
|
||||
# print("grid_data_with_names:", grid_data_with_names)
|
||||
#
|
||||
# # Send the comprehensive grid_data_with_names to the frontend
|
||||
# return jsonify({
|
||||
# 'success': True,
|
||||
# 'gridData': grid_data_with_names,
|
||||
# 'NodeNames': node_names
|
||||
# })
|
||||
# except Exception as e:
|
||||
# print(f"Error processing selected items: {e}")
|
||||
# traceback.print_exc()
|
||||
# return jsonify({'success': False, 'error': str(e)}), 500
|
||||
|
||||
|
||||
|
||||
# Used for Evating the node candidates
|
||||
@main_routes.route('/process-evaluation-data', methods=['POST'])
|
||||
def process_evaluation_data():
|
||||
try:
|
||||
@ -317,17 +193,18 @@ def process_evaluation_data():
|
||||
# Transform grid data to table and get node names directly from the function
|
||||
data_table, relative_wr_data, immediate_wr_data, node_names, node_ids = transform_grid_data_to_table(data)
|
||||
|
||||
# print("data_table FRONT:", data_table)
|
||||
print("data_table Frontend:", data_table)
|
||||
# print("relative_wr_data:", relative_wr_data)
|
||||
# print("immediate_wr_data:", immediate_wr_data)
|
||||
# print("# node_names:", len(node_names))
|
||||
# print("# node_ids:", len(node_ids))
|
||||
|
||||
# Convert RAM and Cores
|
||||
data_table = convert_data_table(data_table)
|
||||
data_table = convert_data_table(data_table) # Convert RAM and # of Cores, e.g. 1/X
|
||||
# Run Optimization - Perform evaluation
|
||||
results = perform_evaluation(data_table, relative_wr_data, immediate_wr_data, node_names, node_ids)
|
||||
# print(results)
|
||||
print("Results: ", results)
|
||||
print("-------------------------------------------------")
|
||||
# Return the results
|
||||
return jsonify({'status': 'success', 'results': results})
|
||||
|
||||
|
@ -170,8 +170,8 @@
|
||||
const ranks = this.results.map(result => result.Rank);
|
||||
|
||||
this.$nextTick(() => {
|
||||
this.createBarChart(titles, deaScores, 'deascoresChart', 'Fog Node Scores');
|
||||
this.createHorizontalBarChart(titles, ranks, 'ranksChart', 'Fog Node Ranking');
|
||||
this.createBarChart(titles, deaScores, 'deascoresChart', 'Scores');
|
||||
this.createHorizontalBarChart(titles, ranks, 'ranksChart', 'Ranking');
|
||||
});
|
||||
},
|
||||
createBarChart(labels, data, chartId, label) {
|
||||
|
Loading…
Reference in New Issue
Block a user