Code improvements
Allow multiple publishers for different applications Included all necessary python application packages in setup.py Improved diagnostics and documentation in the R forecaster Changed installation method for the application to align with the requirements of Opendev and Zuul Refactoring of exn python connector code Improvements to the forecaster state variables, main prediction logic and the handling of influxdb connections Improvement in the prediction file handling of empty data Configuration file improvements Change-Id: Ic8aaa0728a4b936cd4c6e1ed5a0e01ba8f0fb002
This commit is contained in:
parent
c40f480ce9
commit
59968e9fc4
2
.hadolint.yaml
Normal file
2
.hadolint.yaml
Normal file
@ -0,0 +1,2 @@
|
||||
ignored:
|
||||
- DL3008
|
@ -5,7 +5,7 @@
|
||||
replicaCount: 1
|
||||
|
||||
image:
|
||||
repository: "quay.io/nebulous/exponential-smoothing-predictor-java-spring-boot-demo"
|
||||
repository: "quay.io/nebulous/exponential-smoothing-predictor"
|
||||
pullPolicy: IfNotPresent
|
||||
# Overrides the image tag whose default is the chart appVersion.
|
||||
tag: ""
|
||||
|
@ -9,64 +9,65 @@ FROM python:3.11 as source
|
||||
|
||||
RUN mkdir /src
|
||||
COPY ./src/ /src/
|
||||
|
||||
#COPY src/requirements.txt /src/
|
||||
WORKDIR /src
|
||||
RUN pip install --no-cache-dir -r requirements.txt && python3 setup.py sdist
|
||||
|
||||
FROM ubuntu:noble
|
||||
#FROM ubuntu:noble
|
||||
FROM python:3.11-slim
|
||||
RUN mkdir -p /home/r_predictions
|
||||
|
||||
#RUN apt-get update
|
||||
ENV LOG_FILE=exponential_smoothing.log
|
||||
ENV TZ=Europe/Athens
|
||||
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get update && apt-get install --no-install-recommends -y \
|
||||
libcurl4-openssl-dev=8.5.0-2ubuntu1 \
|
||||
build-essential=12.10ubuntu1 \
|
||||
r-base-core=4.3.2-1build1 \
|
||||
r-base-dev=4.3.2-1build1 \
|
||||
r-cran-digest=0.6.34-1 \
|
||||
r-cran-boot=1.3-28.1-1 \
|
||||
r-cran-class=7.3-22-2 \
|
||||
r-cran-cluster=2.1.6-1 \
|
||||
r-cran-codetools=0.2-19-1 \
|
||||
r-cran-foreign=0.8.86-1 \
|
||||
r-cran-kernsmooth=2.23-22-1 \
|
||||
r-cran-lattice=0.22-5-1 \
|
||||
r-cran-littler=0.3.19-1 \
|
||||
r-cran-mass=7.3-60-2 \
|
||||
r-cran-matrix=1.6-4-1 \
|
||||
r-cran-mgcv=1.9-1-1 \
|
||||
r-cran-nlme=3.1.164-1 \
|
||||
r-cran-nnet=7.3-19-2 \
|
||||
r-cran-pkgkitten=0.2.3-1 \
|
||||
r-cran-rcpp=1.0.11-1 \
|
||||
r-cran-rpart=4.1.23-1 \
|
||||
r-cran-spatial=7.3-17-1 \
|
||||
r-cran-survival=3.5-7-1 \
|
||||
r-doc-html=4.3.2-1build1 \
|
||||
r-recommended=4.3.2-1build1 \
|
||||
python3=3.11.4-5ubuntu1 \
|
||||
python3-pip=23.3+dfsg-1 \
|
||||
python3.11-venv=3.11.7-2 \
|
||||
libcurl4-openssl-dev \
|
||||
build-essential \
|
||||
r-base-core \
|
||||
r-base-dev \
|
||||
r-cran-digest \
|
||||
r-cran-boot \
|
||||
r-cran-class \
|
||||
r-cran-cluster \
|
||||
r-cran-codetools \
|
||||
r-cran-foreign \
|
||||
r-cran-kernsmooth \
|
||||
r-cran-lattice \
|
||||
r-cran-littler \
|
||||
r-cran-mass \
|
||||
r-cran-matrix \
|
||||
r-cran-mgcv \
|
||||
r-cran-nlme \
|
||||
r-cran-nnet \
|
||||
r-cran-pkgkitten \
|
||||
r-cran-rcpp \
|
||||
r-cran-rpart \
|
||||
r-cran-spatial \
|
||||
r-cran-survival \
|
||||
r-doc-html \
|
||||
r-recommended \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
COPY ./src/r_predictors/r_commands.R /home/r_predictions/
|
||||
COPY --from=source /src/r_predictors/r_commands.R /home/r_predictions/
|
||||
RUN Rscript /home/r_predictions/r_commands.R #install prerequisite libraries
|
||||
|
||||
COPY --from=source ./src/dist/esm_forecaster-0.1.0.tar.gz /home/r_predictions/
|
||||
COPY ./src/requirements.txt /home/r_predictions/
|
||||
COPY ./src/prepare_python_dependencies.sh /home/r_predictions/
|
||||
COPY --from=source /src/dist/esm_forecaster-0.1.0.tar.gz /home/r_predictions/
|
||||
COPY --from=source /src/requirements.txt /home/r_predictions/
|
||||
COPY --from=source /src/prepare_python_dependencies.sh /home/r_predictions/
|
||||
RUN bash -x /home/r_predictions/prepare_python_dependencies.sh
|
||||
|
||||
COPY ./src/r_predictors/forecasting_real_workload.R /home/r_predictions/
|
||||
COPY --from=source /src/r_predictors/forecasting_real_workload.R /home/r_predictions/
|
||||
COPY --from=source /src/r_predictors/prediction_configuration.properties /home/r_predictions/
|
||||
|
||||
#The two commented lines below only serve for experiments with predictive functionality
|
||||
|
||||
#below two commented lines only serve for experiments with predictive functionality
|
||||
#COPY ./default_application.csv /home/r_predictions
|
||||
#RUN Rscript forecasting_real_workload.R default_application.csv MinimumCores 1638878119
|
||||
|
||||
WORKDIR /home/r_predictions/esm_forecaster-0.1.0
|
||||
#WORKDIR /home/r_predictions/esm_forecaster-0.1.0
|
||||
|
||||
CMD ["/bin/sh","-c",". /home/forecasting_env/bin/activate && python3 -u /home/r_predictions/esm_forecaster-0.1.0/runtime/Predictor.py /home/r_predictions/esm_forecaster-0.1.0/r_predictors/prediction_configuration.properties 2>&1 > $LOG_FILE "]
|
||||
CMD ["/usr/local/bin/start_exsmoothing","/home/r_predictions/prediction_configuration.properties"," > $LOG_FILE 2>&1 "]
|
||||
|
||||
|
6
exponential-smoothing-predictor/src/exn/__init__.py
Normal file
6
exponential-smoothing-predictor/src/exn/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
|
||||
|
||||
from . import core
|
||||
from . import handler
|
||||
from . import settings
|
||||
from . import connector
|
84
exponential-smoothing-predictor/src/exn/connector.py
Normal file
84
exponential-smoothing-predictor/src/exn/connector.py
Normal file
@ -0,0 +1,84 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
from proton.reactor import Container
|
||||
|
||||
from exn.core import state_publisher, schedule_publisher
|
||||
from exn.core.context import Context
|
||||
from .core.manager import Manager
|
||||
from .settings import base
|
||||
from .handler import connector_handler
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class EXN:
|
||||
|
||||
context = None
|
||||
container = None
|
||||
|
||||
def __init__(self, component=None,
|
||||
handler:connector_handler.ConnectorHandler = None,
|
||||
publishers=None,
|
||||
consumers=None,
|
||||
**kwargs):
|
||||
|
||||
# Load .env file
|
||||
# Validate and set connector
|
||||
if not component:
|
||||
_logger.error("Component cannot be empty or None")
|
||||
raise ValueError("Component cannot be empty or None")
|
||||
self.component = component
|
||||
|
||||
self.url = kwargs.get('url',os.getenv('NEBULOUS_BROKER_URL'))
|
||||
self.port = kwargs.get('port', os.getenv('NEBULOUS_BROKER_PORT'))
|
||||
self.username = kwargs.get('username',os.getenv('NEBULOUS_BROKER_USERNAME'))
|
||||
self.password = kwargs.get('password', os.getenv('NEBULOUS_BROKER_PASSWORD'))
|
||||
self.handler = handler
|
||||
|
||||
# Validate attributes
|
||||
if not self.url:
|
||||
_logger.error("URL cannot be empty or None")
|
||||
raise ValueError("URL cannot be empty or None")
|
||||
if not self.port:
|
||||
_logger.error("PORT cannot be empty or None")
|
||||
raise ValueError("PORT cannot be empty or None")
|
||||
if not self.username:
|
||||
_logger.error("USERNAME cannot be empty or None")
|
||||
raise ValueError("USERNAME cannot be empty or None")
|
||||
if not self.password:
|
||||
_logger.error("PASSWORD cannot be empty or None")
|
||||
raise ValueError("PASSWORD cannot be empty or None")
|
||||
|
||||
self.context = Context(base=f"{base.NEBULOUS_BASE_NAME}.{self.component}")
|
||||
|
||||
if not publishers:
|
||||
publishers = []
|
||||
|
||||
if not consumers:
|
||||
consumers = []
|
||||
|
||||
compiled_publishers = publishers
|
||||
if kwargs.get("enable_state",False):
|
||||
compiled_publishers.append(state_publisher.Publisher())
|
||||
|
||||
if kwargs.get("enable_health",False):
|
||||
compiled_publishers.append(schedule_publisher.Publisher(
|
||||
base.NEBULOUS_DEFAULT_HEALTH_CHECK_TIMEOUT,
|
||||
'health',
|
||||
'health',
|
||||
topic=True))
|
||||
|
||||
for c in consumers:
|
||||
self.context.register_consumers(c)
|
||||
|
||||
for p in compiled_publishers:
|
||||
self.context.register_publisher(p)
|
||||
|
||||
def start(self):
|
||||
self.context.start(Manager(f"{self.url}:{self.port}"),self.handler)
|
||||
|
||||
|
||||
def stop(self):
|
||||
self.context.stop()
|
@ -1,6 +1,7 @@
|
||||
|
||||
|
||||
from . import context
|
||||
from . import handler
|
||||
from . import publisher
|
||||
from . import consumer
|
||||
from . import state_publisher
|
43
exponential-smoothing-predictor/src/exn/core/consumer.py
Normal file
43
exponential-smoothing-predictor/src/exn/core/consumer.py
Normal file
@ -0,0 +1,43 @@
|
||||
import logging
|
||||
|
||||
from proton import Event
|
||||
from .handler import Handler
|
||||
|
||||
from . import link
|
||||
|
||||
from proton.handlers import MessagingHandler
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
_logger.setLevel(level=logging.DEBUG)
|
||||
|
||||
|
||||
class Consumer(link.Link, MessagingHandler):
|
||||
application = None
|
||||
|
||||
def __init__(self, key, address, handler: Handler, application=None, topic=False, fqdn=False):
|
||||
super(Consumer, self).__init__(key, address, topic, fqdn)
|
||||
self.application = application
|
||||
self.handler = handler
|
||||
self.handler._consumer = self
|
||||
|
||||
def should_handle(self, event: Event):
|
||||
|
||||
should = event.link.name == self._link.name and \
|
||||
(self.application is None or event.message.subject == self.application)
|
||||
|
||||
_logger.debug(f"[{self.key}] checking if link is the same {event.link.name}={self._link.name} "
|
||||
f" and application {self.application}={event.message.subject} == {should}")
|
||||
|
||||
return should
|
||||
|
||||
def on_start(self, event: Event) -> None:
|
||||
_logger.debug(f"[{self.key}] on_start")
|
||||
|
||||
def on_message(self, event):
|
||||
_logger.debug(f"[{self.key}] handling event with address => {event.message.address}")
|
||||
try:
|
||||
if self.should_handle(event):
|
||||
self.handler.on_message(self.key, event.message.address, event.message.body, event.message)
|
||||
|
||||
except Exception as e:
|
||||
_logger.error(f"Received message: {e}")
|
109
exponential-smoothing-predictor/src/exn/core/context.py
Normal file
109
exponential-smoothing-predictor/src/exn/core/context.py
Normal file
@ -0,0 +1,109 @@
|
||||
import logging
|
||||
|
||||
from proton.reactor import Container
|
||||
|
||||
from . import link
|
||||
from .manager import Manager
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
_logger.setLevel(logging.DEBUG)
|
||||
|
||||
class Context:
|
||||
|
||||
base = None
|
||||
handler = None
|
||||
publishers = {}
|
||||
consumers = {}
|
||||
_manager = None
|
||||
|
||||
def __init__(self, base):
|
||||
|
||||
self.base = base
|
||||
|
||||
def start(self, manager:Manager, handler):
|
||||
self._manager = manager
|
||||
|
||||
def on_ready():
|
||||
_logger.debug("[context] on_ready" )
|
||||
for key,publisher in self.publishers.items():
|
||||
self._manager.start_publisher(self,publisher)
|
||||
|
||||
for key,consumer in self.consumers.items():
|
||||
self._manager.start_consumer(self,consumer)
|
||||
|
||||
handler.ready(context=self)
|
||||
|
||||
self._manager._on_ready=on_ready
|
||||
self._manager.start()
|
||||
|
||||
def stop(self):
|
||||
if self._manager is not None and self._manager.started:
|
||||
for key,publisher in self.publishers:
|
||||
publisher._link.close()
|
||||
for key,consumer in self.consumers:
|
||||
consumer._link.close()
|
||||
|
||||
self._manager.close()
|
||||
|
||||
|
||||
def register_publisher(self, publisher):
|
||||
if publisher.key in self.publishers:
|
||||
_logger.warning("[context] Trying to register publisher that already exists")
|
||||
return
|
||||
_logger.info(f"[context] registering publisher {publisher.key} {publisher.address}" )
|
||||
self.publishers[publisher.key] = publisher
|
||||
if self._manager is not None and self._manager.started:
|
||||
self._manager.start_publisher(self,publisher)
|
||||
|
||||
def get_publisher(self, key):
|
||||
if key in self.publishers:
|
||||
return self.publishers[key]
|
||||
return None
|
||||
|
||||
def has_publisher(self, key):
|
||||
return key in self.publishers
|
||||
|
||||
def has_consumer(self, key):
|
||||
return key in self.consumers
|
||||
|
||||
def register_consumers(self, consumer):
|
||||
if consumer.key in self.consumers:
|
||||
_logger.warning("[context] Trying to register consumer that already exists")
|
||||
return
|
||||
|
||||
self.consumers[consumer.key] = consumer
|
||||
if self._manager is not None and self._manager.started:
|
||||
self._manager.start_consumer(self,consumer)
|
||||
|
||||
def unregister_consumer(self, key):
|
||||
if not key in self.consumers:
|
||||
_logger.warning("[context] Trying to unregister consumer that does not exists")
|
||||
return
|
||||
|
||||
consumer = self.consumers.pop(key)
|
||||
if self._manager is not None and self._manager.started:
|
||||
consumer._link.close()
|
||||
|
||||
def unregister_publisher(self, key):
|
||||
if not key in self.consumers:
|
||||
_logger.warning("[context] Trying to unregister publisher that does not exists")
|
||||
return
|
||||
publisher = self.publishers.pop(key)
|
||||
if self._manager is not None and self._manager.started:
|
||||
publisher._link.close()
|
||||
|
||||
def build_address_from_link(self, link: link.Link):
|
||||
|
||||
if link.fqdn:
|
||||
address = link.address
|
||||
if link.topic and not link.address.startswith("topic://"):
|
||||
address = f"topic://{address}"
|
||||
return address
|
||||
|
||||
address = f"{self.base}.{link.address}"
|
||||
if link.topic:
|
||||
address = f"topic://{address}"
|
||||
|
||||
return address
|
||||
|
11
exponential-smoothing-predictor/src/exn/core/handler.py
Normal file
11
exponential-smoothing-predictor/src/exn/core/handler.py
Normal file
@ -0,0 +1,11 @@
|
||||
import logging
|
||||
|
||||
from proton import Message
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Handler:
|
||||
|
||||
def on_message(self, key, address, body, message: Message, context=None):
|
||||
_logger.info(f"You should really override this... {key}=>{address}")
|
@ -1,16 +1,18 @@
|
||||
|
||||
|
||||
from proton import Link as pLink
|
||||
|
||||
class Link:
|
||||
|
||||
fqdn=False
|
||||
def __init__(self, key, address, topic=False, fqdn=False):
|
||||
|
||||
def __init__(self, key, address, topic=False, fqdn=False):
|
||||
super().__init__()
|
||||
self.key = key
|
||||
self.address = address
|
||||
self._link = None
|
||||
self.topic= topic
|
||||
self.fqdn= fqdn
|
||||
|
||||
self._link = None
|
||||
|
||||
def set(self, link:pLink):
|
||||
# The proton container creates a sender
|
71
exponential-smoothing-predictor/src/exn/core/manager.py
Normal file
71
exponential-smoothing-predictor/src/exn/core/manager.py
Normal file
@ -0,0 +1,71 @@
|
||||
import logging
|
||||
|
||||
from proton import Event, Connection,Session
|
||||
|
||||
from proton.handlers import MessagingHandler
|
||||
from proton.reactor import Container
|
||||
|
||||
from .consumer import Consumer
|
||||
from .publisher import Publisher
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
_logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
class SessionPerConsumer(object):
|
||||
def session(self, connection: Connection) -> Session:
|
||||
session = connection.session()
|
||||
session.open()
|
||||
return session
|
||||
|
||||
|
||||
class Manager(MessagingHandler):
|
||||
uri = None
|
||||
started = False
|
||||
container = None
|
||||
connection = None
|
||||
|
||||
_on_ready = None
|
||||
|
||||
def __init__(self, uri):
|
||||
super(Manager, self).__init__()
|
||||
self.uri = uri
|
||||
|
||||
def start(self):
|
||||
_logger.info(f"[manager] starting")
|
||||
self.container = Container(self)
|
||||
self.container.run()
|
||||
|
||||
def on_start(self, event: Event) -> None:
|
||||
self.connection = self.container.connect(self.uri)
|
||||
self.connection._session_policy=SessionPerConsumer()
|
||||
|
||||
self.started=True
|
||||
_logger.debug(f"[manager] on_start")
|
||||
if self._on_ready is not None:
|
||||
self._on_ready()
|
||||
|
||||
def on_message(self, event: Event) -> None:
|
||||
_logger.warning(f"[manager] received generic on_message make sure you have set up your handlers"
|
||||
f" properly ")
|
||||
|
||||
def close(self):
|
||||
_logger.info(f"[manager] closing")
|
||||
if self.container:
|
||||
self.container.stop()
|
||||
|
||||
if self.connection:
|
||||
self.connection.close()
|
||||
|
||||
def start_publisher(self, context, publisher: Publisher):
|
||||
address = context.build_address_from_link(publisher)
|
||||
_logger.info(f"[manager] starting publisher {publisher.key} => {address}")
|
||||
publisher.set(self.container.create_sender(self.connection, address))
|
||||
if hasattr(publisher, "delay"):
|
||||
_logger.debug(f"{context.base} registering timer {hasattr(publisher, 'delay')}")
|
||||
self.container.schedule(publisher.delay, handler=publisher)
|
||||
|
||||
def start_consumer(self, context, consumer: Consumer):
|
||||
address = context.build_address_from_link(consumer)
|
||||
_logger.info(f"[manager] starting consumer {consumer.key} => {address}")
|
||||
consumer.set(self.container.create_receiver(self.connection, address , handler=consumer))
|
@ -10,12 +10,15 @@ _logger = logging.getLogger(__name__)
|
||||
|
||||
class Publisher(link.Link):
|
||||
|
||||
def send(self, body=None):
|
||||
def send(self, body=None, application=None):
|
||||
if not body:
|
||||
body = {}
|
||||
|
||||
_logger.debug(f"{self.address} Sending {body} ")
|
||||
_logger.info(f"[{self.key}] sending to {self._link.target.address} for application={application} - {body} ")
|
||||
msg = self._prepare_message(body)
|
||||
if application:
|
||||
msg.subject = application
|
||||
|
||||
self._link.send(msg)
|
||||
|
||||
def _prepare_message(self, body=None):
|
@ -0,0 +1,24 @@
|
||||
import logging
|
||||
|
||||
from proton.handlers import MessagingHandler
|
||||
from .publisher import Publisher
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Publisher(Publisher, MessagingHandler):
|
||||
send_next = False
|
||||
delay = 15
|
||||
|
||||
def __init__(self, delay, key, address, application=None, topic=False, fqdn=False):
|
||||
super(Publisher, self).__init__(key, address, topic,fqdn)
|
||||
self.delay = delay
|
||||
self.application = application
|
||||
|
||||
def on_timer_task(self, event):
|
||||
_logger.debug(f"[manager] on_timer_task")
|
||||
self.send()
|
||||
event.reactor.schedule(self.delay, self)
|
||||
|
||||
def send(self, body=None, application=None):
|
||||
super(Publisher, self).send(body, self.application)
|
@ -27,19 +27,19 @@ class Publisher(publisher.Publisher):
|
||||
self.send({"state": message_type,"message": None})
|
||||
|
||||
def starting(self):
|
||||
self._send_message(States.STARTING)
|
||||
self._send_message(States.STARTING.value)
|
||||
|
||||
def started(self):
|
||||
self._send_message(States.STARTED)
|
||||
self._send_message(States.STARTED.value)
|
||||
|
||||
def ready(self):
|
||||
self._send_message(States.READY)
|
||||
self._send_message(States.READY.value)
|
||||
|
||||
def stopping(self):
|
||||
self._send_message(States.STOPPING)
|
||||
self._send_message(States.STOPPING.value)
|
||||
|
||||
def stopped(self):
|
||||
self._send_message(States.STOPPED)
|
||||
self._send_message(States.STOPPED.value)
|
||||
|
||||
def custom(self, state):
|
||||
self._send_message(state)
|
@ -0,0 +1,2 @@
|
||||
|
||||
from . import connector_handler
|
@ -0,0 +1,12 @@
|
||||
|
||||
import logging
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
class ConnectorHandler:
|
||||
|
||||
def ready(self, context):
|
||||
pass
|
||||
|
||||
|
2
exponential-smoothing-predictor/src/exn/settings/base.py
Normal file
2
exponential-smoothing-predictor/src/exn/settings/base.py
Normal file
@ -0,0 +1,2 @@
|
||||
NEBULOUS_BASE_NAME="eu.nebulouscloud"
|
||||
NEBULOUS_DEFAULT_HEALTH_CHECK_TIMEOUT=15
|
@ -1,10 +1,10 @@
|
||||
EXPONENTIAL_SMOOTHING_VERSION="0.1.0"
|
||||
python3 -m venv /home/forecasting_env
|
||||
. /home/forecasting_env/bin/activate
|
||||
##python3 -m venv /home/forecasting_env
|
||||
##. /home/forecasting_env/bin/activate
|
||||
pip3 install --no-cache-dir -r /home/r_predictions/requirements.txt
|
||||
cd /home/r_predictions
|
||||
|
||||
# Install the module itself (provided that the tar.gz file of the module has already been copied inside the container)
|
||||
|
||||
pip install esm_forecaster-$EXPONENTIAL_SMOOTHING_VERSION.tar.gz
|
||||
tar -xzvf esm_forecaster-$EXPONENTIAL_SMOOTHING_VERSION.tar.gz
|
||||
pip install esm_forecaster-$EXPONENTIAL_SMOOTHING_VERSION.tar.gz #--break-system-packages
|
||||
##tar -xzvf esm_forecaster-$EXPONENTIAL_SMOOTHING_VERSION.tar.gz
|
||||
|
@ -20,8 +20,8 @@ library(purrr)
|
||||
#
|
||||
# This forecasting script relies on the presence of a dataset which contains the metric values to be forecasted. It is called with three main parameters - dataset path, metric to be forecasted and the time for which the forecast should be produced - and two optional parameters, the alpha and beta coefficients to be used during forecasting. The time for which the forecast should be produced may be ommitted under some circumstances.
|
||||
#
|
||||
# To create the final dataset which will be used for predictions, this script creates a timeseries with all times from the beginning of the observations in the dataset, until its end, using 1-second intervals (to allow for predictions based on epoch). In order for the exponential smoothing forecaster to operate satisfactorily, it is necessary to set the `number_of_seconds_to_aggregate_on` variable to a value which is large enough to smooth small fluctuations, yet small enough to allow for reasonable reaction times (e.g 300 seconds).
|
||||
# Once the creation of the dataset is over, the `configuration_forecasting_horizon` configuration property is evaluated. If this value is positive, the time for which the forecast should be made should be provided as a command line argument, and this allows the formation of a training dataset and a test dataset. If a non-positive horizon is provided, then the `realtime_mode` configuration property is evaluated. In case that this is false, the prediction time does not need to be provided (it means we simply want to evaluate the predictive functionality based on past data), and the next prediction time will be the time of the last observation in the dataset. If the realtime mode parameter is true, then the prediction time needs to be provided, and the script will try to create a prediction using the minimum value between the next prediction time and the last observation time which is available in the dataset - in this case the next prediction time is also needed(TODO:perhaps this behaviour should be changed).
|
||||
# To create the final dataset which will be used for predictions, this script creates a timeseries with all times from the beginning of the observations in the dataset, until its end, using 1-second intervals (to allow for predictions based on epoch). In order for the exponential smoothing forecaster to operate satisfactorily, it is necessary to set the `number_of_seconds_to_aggregate_on` variable to a value which is large enough to smooth small fluctuations, yet small enough to allow for reasonable reaction times (e.g 300 seconds). Beware, this number_of_seconds_to_aggregate_on variable is changed (probably increased) at runtime from its initial configuration so that the forecaster does not consume too much time trying to create predictions. This means that more observations will be necessary to guarantee accurate predictions
|
||||
# Once the creation of the dataset is over, the `configuration_forecasting_horizon` configuration property is evaluated. If this value is positive, the time for which the forecast should be made should be provided as a command line argument, and this allows the formation of a training dataset and a test dataset. If a non-positive horizon is provided, then the `realtime_mode` configuration property is evaluated. In case that this is false, the prediction time does not need to be provided (it means we simply want to evaluate the predictive functionality based on past data), and the next prediction time will be the time of the last observation in the dataset. If the realtime mode parameter is true, then the prediction time needs to be provided, and the script will try to create a prediction using the maximum value between the next prediction time and the last observation time which is available in the dataset - in this case the next prediction time is needed as well.
|
||||
#Then, the final data points which will be used for the forecasting are determined, and the forecasting models are created, to produce predictions. The user of the script can opt to try finding the best parameters manually, using the `try_to_optimize_parameters` configuration parameter.
|
||||
|
||||
find_smape <- function(actual, forecast) {
|
||||
@ -92,7 +92,14 @@ beta_value_argument <- as.double(args[5])
|
||||
#mydata <- read.csv(configuration_properties$input_data_file, sep=",", header=TRUE)
|
||||
#mydata <- read.csv(dataset_to_process, sep=",", header=TRUE)
|
||||
|
||||
data_to_process <- read.csv(dataset_to_process, sep=",", header=TRUE)
|
||||
if (file.info(dataset_to_process)$size > 0) {
|
||||
# File is not empty, proceed with reading
|
||||
data_to_process <- read.csv(dataset_to_process, sep=",", header=TRUE)
|
||||
} else {
|
||||
# File is empty, handle accordingly (e.g., show a message or skip the reading process)
|
||||
print(paste("The file ",dataset_to_process," is empty. Please provide a non-empty file."))
|
||||
stop()
|
||||
}
|
||||
#sanitize data_to_process by removing any very old values which may have been accidentally introduced. For this reason we remove all data points before now - number_of_days*24hrs*3600sec/hr seconds, and we additionally subtract configuration_properties$prediction_processing_time_safety_margin_seconds in order to account for the time it takes to create the dataset and start the prediction process)
|
||||
current_time <- get_current_epoch_time()
|
||||
if (!realtime_mode){
|
||||
@ -293,13 +300,13 @@ if (try_to_optimize_parameters){
|
||||
|
||||
#Creation of forecasting model
|
||||
if (try_to_optimize_parameters){
|
||||
holt_winters_forecasting_model <- HoltWinters(mydata_trainseries,alpha=optimal_alpha,beta=optimal_beta,gamma=optimal_gamma)
|
||||
holt_winters_forecasting_model <- HoltWinters(mydata_trainseries,alpha=optimal_alpha,beta=optimal_beta,gamma=optimal_gamma)
|
||||
|
||||
ets_forecasting_model <- tryCatch({
|
||||
ets(mydata_trainseries,alpha = optimal_alpha,beta = optimal_beta,gamma = optimal_gamma) #phi is left to be optimized
|
||||
}, error = function(e) {
|
||||
NULL
|
||||
})
|
||||
ets_forecasting_model <- tryCatch({
|
||||
ets(mydata_trainseries,alpha = optimal_alpha,beta = optimal_beta,gamma = optimal_gamma) #phi is left to be optimized
|
||||
}, error = function(e) {
|
||||
NULL
|
||||
})
|
||||
|
||||
|
||||
|
||||
@ -332,6 +339,19 @@ if (try_to_optimize_parameters){
|
||||
}, error = function(e) {
|
||||
NULL
|
||||
})
|
||||
if (length(mydata_trainseries)<3){
|
||||
print("Possible issue expected with a very small trainseries (length is less than 3). The contents of the trainseries are the following:")
|
||||
print(mydata_trainseries)
|
||||
print("This trainseries originated from the following aggregated data:")
|
||||
print(mydata.train)
|
||||
print(paste("The number of seconds to aggregate on is:",number_of_seconds_to_aggregate_on))
|
||||
print("The above aggregated data was based on these training data points: ")
|
||||
print(training_datapoints)
|
||||
print("These training data points originate from these data points:")
|
||||
print(data_points)
|
||||
print(paste("by using the first", number_of_data_points_used_for_training, "data points"))
|
||||
|
||||
}
|
||||
holt_winters_forecasting_model <- HoltWinters(mydata_trainseries,gamma=FALSE)
|
||||
}
|
||||
}
|
||||
|
@ -5,15 +5,15 @@
|
||||
APP_NAME=default_application
|
||||
METHOD=exponential_smoothing
|
||||
|
||||
INFLUXDB_HOSTNAME=localhost
|
||||
INFLUXDB_HOSTNAME=nebulous-influxdb
|
||||
INFLUXDB_PORT=8086
|
||||
INFLUXDB_USERNAME=morphemic
|
||||
INFLUXDB_PASSWORD=password
|
||||
INFLUXDB_DBNAME=morphemic
|
||||
INFLUXDB_ORG=morphemic
|
||||
INFLUXDB_USERNAME=my-user
|
||||
INFLUXDB_PASSWORD=my-password
|
||||
INFLUXDB_ORG=my-org
|
||||
INFLUXDB_ORG_ID=9c929742d57cca02
|
||||
|
||||
broker_address=localhost
|
||||
broker_port=61613
|
||||
broker_address=nebulous-activemq
|
||||
broker_port=5672
|
||||
broker_username=admin
|
||||
broker_password=admin
|
||||
prediction_method=Holt-Winters
|
||||
|
@ -1,14 +1,14 @@
|
||||
#Fri Jan 12 17:06:48 UTC 2024
|
||||
#Tue May 14 12:59:33 UTC 2024
|
||||
APP_NAME=default_application
|
||||
METHOD=exponential_smoothing
|
||||
INFLUXDB_HOSTNAME=localhost
|
||||
INFLUXDB_HOSTNAME=nebulous-influxdb
|
||||
INFLUXDB_PORT=8086
|
||||
INFLUXDB_USERNAME=morphemic
|
||||
INFLUXDB_PASSWORD=password
|
||||
INFLUXDB_DBNAME=morphemic
|
||||
INFLUXDB_ORG=morphemic
|
||||
broker_address=localhost
|
||||
broker_port=61610
|
||||
INFLUXDB_USERNAME=my-user
|
||||
INFLUXDB_PASSWORD=my-password
|
||||
INFLUXDB_ORG=my-org
|
||||
INFLUXDB_ORG_ID=9c929742d57cca02
|
||||
broker_address=nebulous-activemq
|
||||
broker_port=5672
|
||||
broker_username=morphemic
|
||||
broker_password=morphemic
|
||||
prediction_method=Holt-Winters
|
||||
|
@ -1,9 +1,7 @@
|
||||
python-slugify==8.0.1
|
||||
jproperties==2.1.1
|
||||
requests==2.31.0
|
||||
msgpack==1.0.7
|
||||
numpy==1.26.3
|
||||
pandas==2.1.4
|
||||
python-dotenv==1.0.0
|
||||
python-qpid-proton==0.39.0
|
||||
influxdb-client==1.39.0
|
||||
influxdb-client==1.39.0
|
||||
python-dotenv==1.0.0
|
||||
python-dateutil==2.8.2
|
@ -12,56 +12,105 @@ import os, sys
|
||||
import multiprocessing
|
||||
import traceback
|
||||
from subprocess import PIPE, run
|
||||
from runtime.exn import core
|
||||
from exn import core
|
||||
|
||||
import logging
|
||||
from runtime.exn import connector
|
||||
from exn import connector
|
||||
from exn.core.handler import Handler
|
||||
from exn.handler.connector_handler import ConnectorHandler
|
||||
from runtime.operational_status.ApplicationState import ApplicationState
|
||||
from runtime.predictions.Prediction import Prediction
|
||||
from runtime.operational_status.State import State
|
||||
from runtime.operational_status.EsPredictorState import EsPredictorState
|
||||
from runtime.utilities.PredictionPublisher import PredictionPublisher
|
||||
from runtime.utilities.Utilities import Utilities
|
||||
print_with_time = Utilities.print_with_time
|
||||
|
||||
|
||||
def sanitize_prediction_statistics(prediction_confidence_interval, prediction_value, metric_name, application_state):
|
||||
|
||||
print_with_time("Inside the sanitization process with an interval of " + prediction_confidence_interval +" and a prediction of " + str(prediction_value))
|
||||
lower_value_prediction_confidence_interval = float(prediction_confidence_interval.split(",")[0])
|
||||
upper_value_prediction_confidence_interval = float(prediction_confidence_interval.split(",")[1])
|
||||
|
||||
"""if (not application_name in EsPredictorState.individual_application_state):
|
||||
print_with_time("There is an issue with the application name"+application_name+" not existing in individual application states")
|
||||
return prediction_confidence_interval,prediction_value_produced"""
|
||||
|
||||
lower_bound_value = application_state.lower_bound_value
|
||||
upper_bound_value = application_state.upper_bound_value
|
||||
|
||||
print("Lower_bound_value is "+str(lower_bound_value))
|
||||
confidence_interval_modified = False
|
||||
new_prediction_confidence_interval = prediction_confidence_interval
|
||||
if (not (metric_name in lower_bound_value)) or (not (metric_name in upper_bound_value)):
|
||||
print_with_time(f"Lower value is unmodified - {lower_value_prediction_confidence_interval} and upper value is unmodified - {upper_value_prediction_confidence_interval}")
|
||||
return new_prediction_confidence_interval,prediction_value
|
||||
|
||||
if (lower_value_prediction_confidence_interval < lower_bound_value[metric_name]):
|
||||
lower_value_prediction_confidence_interval = lower_bound_value[metric_name]
|
||||
confidence_interval_modified = True
|
||||
elif (lower_value_prediction_confidence_interval > upper_bound_value[metric_name]):
|
||||
lower_value_prediction_confidence_interval = upper_bound_value[metric_name]
|
||||
confidence_interval_modified = True
|
||||
if (upper_value_prediction_confidence_interval> upper_bound_value[metric_name]):
|
||||
upper_value_prediction_confidence_interval = upper_bound_value[metric_name]
|
||||
confidence_interval_modified = True
|
||||
elif (upper_value_prediction_confidence_interval < lower_bound_value[metric_name]):
|
||||
upper_value_prediction_confidence_interval = lower_bound_value[metric_name]
|
||||
confidence_interval_modified = True
|
||||
if confidence_interval_modified:
|
||||
new_prediction_confidence_interval = str(lower_value_prediction_confidence_interval)+","+str(upper_value_prediction_confidence_interval)
|
||||
print_with_time("The confidence interval "+prediction_confidence_interval+"was modified, becoming "+str(new_prediction_confidence_interval)+", taking into account the values of the metric")
|
||||
if (prediction_value<lower_bound_value[metric_name]):
|
||||
print_with_time("The prediction value of " + str(prediction_value) + " for metric " + metric_name + " was sanitized to " + str(lower_bound_value))
|
||||
prediction_value = lower_bound_value
|
||||
elif (prediction_value > upper_bound_value[metric_name]):
|
||||
print_with_time("The prediction value of " + str(prediction_value) + " for metric " + metric_name + " was sanitized to " + str(upper_bound_value))
|
||||
prediction_value = upper_bound_value
|
||||
|
||||
return new_prediction_confidence_interval,prediction_value
|
||||
|
||||
|
||||
|
||||
|
||||
def predict_attribute(attribute, configuration_file_location,next_prediction_time):
|
||||
def predict_attribute(application_state, attribute, configuration_file_location,next_prediction_time):
|
||||
|
||||
prediction_confidence_interval_produced = False
|
||||
prediction_value_produced = False
|
||||
prediction_valid = False
|
||||
#os.chdir(os.path.dirname(configuration_file_location))
|
||||
State.prediction_data_filename = Utilities.get_prediction_data_filename(configuration_file_location,attribute)
|
||||
application_state.prediction_data_filename = application_state.get_prediction_data_filename(configuration_file_location,attribute)
|
||||
|
||||
from sys import platform
|
||||
if State.testing_prediction_functionality:
|
||||
if EsPredictorState.testing_prediction_functionality:
|
||||
print_with_time("Testing, so output will be based on the horizon setting from the properties file and the last timestamp in the data")
|
||||
print_with_time("Issuing command: Rscript forecasting_real_workload.R "+str(State.prediction_data_filename)+" "+attribute)
|
||||
print_with_time("Issuing command: Rscript forecasting_real_workload.R "+str(application_state.prediction_data_filename)+" "+attribute)
|
||||
|
||||
# Windows
|
||||
if platform == "win32":
|
||||
command = ['Rscript', 'forecasting_real_workload.R', State.prediction_data_filename, attribute]
|
||||
os.chdir("exponential-smoothing-predictor/src/r_predictors")
|
||||
command = ['Rscript', 'forecasting_real_workload.R', application_state.prediction_data_filename, attribute]
|
||||
# linux
|
||||
elif platform == "linux" or platform == "linux2":
|
||||
command = ["Rscript forecasting_real_workload.R "+str(State.prediction_data_filename) + " "+ str(attribute)]
|
||||
os.chdir("/home/r_predictions")
|
||||
command = ["Rscript forecasting_real_workload.R "+str(application_state.prediction_data_filename) + " "+ str(attribute)]
|
||||
#Choosing the solution of linux
|
||||
else:
|
||||
command = ["Rscript forecasting_real_workload.R "+str(State.prediction_data_filename) + " "+ str(attribute)]
|
||||
command = ["Rscript forecasting_real_workload.R "+str(application_state.prediction_data_filename) + " "+ str(attribute)]
|
||||
else:
|
||||
print_with_time("The current directory is "+os.path.abspath(os.getcwd()))
|
||||
print_with_time("Issuing command: Rscript forecasting_real_workload.R "+str(State.prediction_data_filename)+" "+attribute+" "+next_prediction_time)
|
||||
print_with_time("Issuing command: Rscript forecasting_real_workload.R "+str(application_state.prediction_data_filename)+" "+attribute+" "+next_prediction_time)
|
||||
|
||||
# Windows
|
||||
if platform == "win32":
|
||||
command = ['Rscript', 'forecasting_real_workload.R', State.prediction_data_filename, attribute, next_prediction_time]
|
||||
os.chdir("exponential-smoothing-predictor/src/r_predictors")
|
||||
command = ['Rscript', 'forecasting_real_workload.R', application_state.prediction_data_filename, attribute, next_prediction_time]
|
||||
# Linux
|
||||
elif platform == "linux" or platform == "linux2":
|
||||
command = ["Rscript forecasting_real_workload.R "+str(State.prediction_data_filename) + " "+ str(attribute)+" "+str(next_prediction_time) + " 2>&1"]
|
||||
os.chdir("/home/r_predictions")
|
||||
command = ["Rscript forecasting_real_workload.R "+str(application_state.prediction_data_filename) + " "+ str(attribute)+" "+str(next_prediction_time) + " 2>&1"]
|
||||
#Choosing the solution of linux
|
||||
else:
|
||||
command = ["Rscript forecasting_real_workload.R "+str(State.prediction_data_filename) + " "+ str(attribute)+" "+str(next_prediction_time)]
|
||||
os.chdir("/home/r_predictions")
|
||||
command = ["Rscript forecasting_real_workload.R "+str(application_state.prediction_data_filename) + " "+ str(attribute)+" "+str(next_prediction_time)]
|
||||
|
||||
process_output = run(command, shell=True, stdout=PIPE, stderr=PIPE, universal_newlines=True)
|
||||
if (process_output.stdout==""):
|
||||
@ -91,6 +140,7 @@ def predict_attribute(attribute, configuration_file_location,next_prediction_tim
|
||||
elif (string.startswith("smape:")):
|
||||
prediction_smape = string.replace("smape:", "")
|
||||
if (prediction_confidence_interval_produced and prediction_value_produced):
|
||||
prediction_confidence_interval,prediction_value = sanitize_prediction_statistics(prediction_confidence_interval,float(prediction_value),attribute,application_state)
|
||||
prediction_valid = True
|
||||
print_with_time("The prediction for attribute " + attribute + " is " + str(prediction_value)+ " and the confidence interval is "+prediction_confidence_interval)
|
||||
else:
|
||||
@ -101,7 +151,8 @@ def predict_attribute(attribute, configuration_file_location,next_prediction_tim
|
||||
return output_prediction
|
||||
|
||||
|
||||
def predict_attributes(attributes,next_prediction_time):
|
||||
def predict_attributes(application_state,next_prediction_time):
|
||||
attributes = application_state.metrics_to_predict
|
||||
pool = multiprocessing.Pool(len(attributes))
|
||||
print_with_time("Prediction thread pool size set to " + str(len(attributes)))
|
||||
attribute_predictions = {}
|
||||
@ -109,7 +160,7 @@ def predict_attributes(attributes,next_prediction_time):
|
||||
for attribute in attributes:
|
||||
print_with_time("Starting " + attribute + " prediction thread")
|
||||
start_time = time.time()
|
||||
attribute_predictions[attribute] = pool.apply_async(predict_attribute, args=[attribute, State.configuration_file_location,str(next_prediction_time)])
|
||||
attribute_predictions[attribute] = pool.apply_async(predict_attribute, args=[application_state,attribute, EsPredictorState.configuration_file_location, str(next_prediction_time)])
|
||||
#attribute_predictions[attribute] = pool.apply_async(predict_attribute, args=[attribute, configuration_file_location,str(next_prediction_time)]).get()
|
||||
|
||||
for attribute in attributes:
|
||||
@ -138,43 +189,45 @@ def update_prediction_time(epoch_start,prediction_horizon,maximum_time_for_predi
|
||||
return prediction_time
|
||||
|
||||
|
||||
def calculate_and_publish_predictions(prediction_horizon,maximum_time_required_for_prediction):
|
||||
while Bootstrap.start_forecasting:
|
||||
print_with_time("Using " + State.configuration_file_location + " for configuration details...")
|
||||
State.next_prediction_time = update_prediction_time(State.epoch_start, prediction_horizon,maximum_time_required_for_prediction)
|
||||
def calculate_and_publish_predictions(application_state,maximum_time_required_for_prediction):
|
||||
start_forecasting = application_state.start_forecasting
|
||||
|
||||
for attribute in State.metrics_to_predict:
|
||||
if ((State.previous_prediction is not None) and (State.previous_prediction[attribute] is not None) and (State.previous_prediction[attribute].last_prediction_time_needed>maximum_time_required_for_prediction)):
|
||||
maximum_time_required_for_prediction = State.previous_prediction[attribute].last_prediction_time_needed
|
||||
while start_forecasting:
|
||||
print_with_time("Using " + EsPredictorState.configuration_file_location + " for configuration details...")
|
||||
application_state.next_prediction_time = update_prediction_time(application_state.epoch_start, application_state.prediction_horizon,maximum_time_required_for_prediction)
|
||||
|
||||
for attribute in application_state.metrics_to_predict:
|
||||
if ((application_state.previous_prediction is not None) and (application_state.previous_prediction[attribute] is not None) and (application_state.previous_prediction[attribute].last_prediction_time_needed>maximum_time_required_for_prediction)):
|
||||
maximum_time_required_for_prediction = application_state.previous_prediction[attribute].last_prediction_time_needed
|
||||
|
||||
#Below we subtract one reconfiguration interval, as we cannot send a prediction for a time point later than one prediction_horizon interval
|
||||
wait_time = State.next_prediction_time - prediction_horizon - time.time()
|
||||
print_with_time("Waiting for "+str((int(wait_time*100))/100)+" seconds, until time "+datetime.datetime.fromtimestamp(State.next_prediction_time - prediction_horizon).strftime('%Y-%m-%d %H:%M:%S'))
|
||||
wait_time = application_state.next_prediction_time - application_state.prediction_horizon - time.time()
|
||||
print_with_time("Waiting for "+str((int(wait_time*100))/100)+" seconds, until time "+datetime.datetime.fromtimestamp(application_state.next_prediction_time - application_state.prediction_horizon).strftime('%Y-%m-%d %H:%M:%S'))
|
||||
if (wait_time>0):
|
||||
time.sleep(wait_time)
|
||||
if(not Bootstrap.start_forecasting):
|
||||
if(not start_forecasting):
|
||||
break
|
||||
|
||||
Utilities.load_configuration()
|
||||
Utilities.update_monitoring_data()
|
||||
application_state.update_monitoring_data()
|
||||
first_prediction = None
|
||||
for prediction_index in range(0,State.total_time_intervals_to_predict):
|
||||
prediction_time = int(State.next_prediction_time)+prediction_index*prediction_horizon
|
||||
for prediction_index in range(0, EsPredictorState.total_time_intervals_to_predict):
|
||||
prediction_time = int(application_state.next_prediction_time)+prediction_index*application_state.prediction_horizon
|
||||
try:
|
||||
print_with_time ("Initiating predictions for all metrics for next_prediction_time, which is "+str(State.next_prediction_time))
|
||||
prediction = predict_attributes(State.metrics_to_predict,prediction_time)
|
||||
if (prediction_time == int(State.next_prediction_time)):
|
||||
print_with_time ("Initiating predictions for all metrics for next_prediction_time, which is "+str(application_state.next_prediction_time))
|
||||
prediction = predict_attributes(application_state,prediction_time)
|
||||
if (prediction_time == int(application_state.next_prediction_time)):
|
||||
first_prediction = prediction
|
||||
except Exception as e:
|
||||
print_with_time("Could not create a prediction for some or all of the metrics for time point "+str(State.next_prediction_time)+", proceeding to next prediction time. However, "+str(prediction_index)+" predictions were produced (out of the configured "+State.total_time_intervals_to_predict+"). The encountered exception trace follows:")
|
||||
print(e)
|
||||
print_with_time("Could not create a prediction for some or all of the metrics for time point " + str(application_state.next_prediction_time) +", proceeding to next prediction time. However, " + str(prediction_index) +" predictions were produced (out of the configured " + str(EsPredictorState.total_time_intervals_to_predict) + "). The encountered exception trace follows:")
|
||||
print(traceback.format_exc())
|
||||
#continue was here, to continue while loop, replaced by break
|
||||
break
|
||||
for attribute in State.metrics_to_predict:
|
||||
for attribute in application_state.metrics_to_predict:
|
||||
if(not prediction[attribute].prediction_valid):
|
||||
#continue was here, to continue while loop, replaced by break
|
||||
break
|
||||
if (State.disconnected or State.check_stale_connection()):
|
||||
if (EsPredictorState.disconnected or EsPredictorState.check_stale_connection()):
|
||||
logging.info("Possible problem due to disconnection or a stale connection")
|
||||
#State.connection.connect()
|
||||
message_not_sent = True
|
||||
@ -183,16 +236,13 @@ def calculate_and_publish_predictions(prediction_horizon,maximum_time_required_f
|
||||
"metricValue": float(prediction[attribute].value),
|
||||
"level": 3,
|
||||
"timestamp": current_time,
|
||||
"probability": 0.95,
|
||||
"probability": 0.95, #This is the default second parameter of the prediction intervals (first is 80%) created as part of the HoltWinters forecasting mode in R
|
||||
"confidence_interval": [float(prediction[attribute].lower_confidence_interval_value) , float(
|
||||
prediction[attribute].upper_confidence_interval_value)],
|
||||
"predictionTime": prediction_time,
|
||||
"refersTo": "todo",
|
||||
"cloud": "todo",
|
||||
"provider": "todo",
|
||||
}
|
||||
training_models_message_body = {
|
||||
"metrics": State.metrics_to_predict,
|
||||
"metrics": application_state.metrics_to_predict,
|
||||
"forecasting_method": "exponentialsmoothing",
|
||||
"timestamp": current_time,
|
||||
}
|
||||
@ -200,7 +250,7 @@ def calculate_and_publish_predictions(prediction_horizon,maximum_time_required_f
|
||||
try:
|
||||
#for publisher in State.broker_publishers:
|
||||
# if publisher.
|
||||
for publisher in State.broker_publishers:
|
||||
for publisher in EsPredictorState.broker_publishers:
|
||||
#if publisher.address=="eu.nebulouscloud.monitoring.preliminary_predicted.exponentialsmoothing"+attribute:
|
||||
|
||||
if publisher.key=="publisher_"+attribute:
|
||||
@ -211,16 +261,16 @@ def calculate_and_publish_predictions(prediction_horizon,maximum_time_required_f
|
||||
|
||||
#State.connection.send_to_topic('training_models',training_models_message_body)
|
||||
message_not_sent = False
|
||||
print_with_time("Successfully sent prediction message for %s to topic eu.nebulouscloud.preliminary_predicted.%s.%s\n\n%s\n\n" % (attribute, id, attribute, prediction_message_body))
|
||||
print_with_time("Successfully sent prediction message for %s to topic eu.nebulouscloud.preliminary_predicted.%s.%s:\n\n%s\n\n" % (attribute, EsPredictorState.forecaster_name, attribute, prediction_message_body))
|
||||
except ConnectionError as exception:
|
||||
#State.connection.disconnect()
|
||||
#State.connection = messaging.morphemic.Connection('admin', 'admin')
|
||||
#State.connection.connect()
|
||||
logging.error("Error sending intermediate prediction"+str(exception))
|
||||
State.disconnected = False
|
||||
EsPredictorState.disconnected = False
|
||||
|
||||
if (first_prediction is not None):
|
||||
State.previous_prediction = first_prediction #first_prediction is the first of the batch of the predictions which are produced. The size of this batch is set by the State.total_time_intervals_to_predict (currently set to 8)
|
||||
application_state.previous_prediction = first_prediction #first_prediction is the first of the batch of the predictions which are produced. The size of this batch is set by the State.total_time_intervals_to_predict (currently set to 8)
|
||||
|
||||
#State.number_of_days_to_use_data_from = (prediction_horizon - State.prediction_processing_time_safety_margin_seconds) / (wait_time / State.number_of_days_to_use_data_from)
|
||||
#State.number_of_days_to_use_data_from = 1 + int(
|
||||
@ -230,10 +280,10 @@ def calculate_and_publish_predictions(prediction_horizon,maximum_time_required_f
|
||||
|
||||
|
||||
#class Listener(messaging.listener.MorphemicListener):
|
||||
class BootStrap(ConnectorHandler):
|
||||
pass
|
||||
class ConsumerHandler(Handler):
|
||||
|
||||
class Bootstrap(connector.ConnectorHandler):
|
||||
|
||||
start_forecasting = None # Whether the component should start (or keep on) forecasting
|
||||
prediction_thread = None
|
||||
|
||||
def ready(self, context):
|
||||
@ -244,55 +294,102 @@ class Bootstrap(connector.ConnectorHandler):
|
||||
context.publishers['state'].stopping()
|
||||
context.publishers['state'].stopped()
|
||||
|
||||
context.publishers['publisher_cpu_usage'].send({
|
||||
'hello': 'world'
|
||||
})
|
||||
#context.publishers['publisher_cpu_usage'].send({
|
||||
# 'hello': 'world'
|
||||
#})
|
||||
|
||||
def on_message(self, key, address, body, context, **kwargs):
|
||||
application_name = "default_application"
|
||||
address = address.replace("topic://eu.nebulouscloud.","")
|
||||
if (address).startswith(State.MONITORING_DATA_PREFIX):
|
||||
address = address.replace(State.MONITORING_DATA_PREFIX+".","",1)
|
||||
address = address.replace("topic://"+EsPredictorState.GENERAL_TOPIC_PREFIX,"")
|
||||
if (address).startswith(EsPredictorState.MONITORING_DATA_PREFIX):
|
||||
address = address.replace(EsPredictorState.MONITORING_DATA_PREFIX, "", 1)
|
||||
|
||||
logging.info("New monitoring data arrived at topic "+address)
|
||||
logging.info(body)
|
||||
if address == 'metric_list':
|
||||
application_name = body["name"]
|
||||
message_version = body["version"]
|
||||
application_state = None
|
||||
individual_application_state = {}
|
||||
application_already_defined = application_name in EsPredictorState.individual_application_state
|
||||
if ( application_already_defined and
|
||||
( message_version == EsPredictorState.individual_application_state[application_state].message_version )
|
||||
):
|
||||
individual_application_state = EsPredictorState.individual_application_state
|
||||
application_state = individual_application_state[application_name]
|
||||
|
||||
elif (address).startswith(State.FORECASTING_CONTROL_PREFIX):
|
||||
address = address.replace(State.FORECASTING_CONTROL_PREFIX+".","",1)
|
||||
logging.info("The address is " + address)
|
||||
print_with_time("Using existing application definition for "+application_name)
|
||||
else:
|
||||
if (application_already_defined):
|
||||
print_with_time("Updating application "+application_name+" based on new metrics list message")
|
||||
else:
|
||||
print_with_time("Creating new application "+application_name)
|
||||
application_state = ApplicationState(application_name,message_version)
|
||||
metric_list_object = body["metric_list"]
|
||||
lower_bound_value = application_state.lower_bound_value
|
||||
upper_bound_value = application_state.upper_bound_value
|
||||
for metric_object in metric_list_object:
|
||||
lower_bound_value[metric_object["name"]]=float(metric_object["lower_bound"])
|
||||
upper_bound_value[metric_object["name"]]=float(metric_object["upper_bound"])
|
||||
|
||||
if address == 'metrics_to_predict':
|
||||
application_state.lower_bound_value.update(lower_bound_value)
|
||||
application_state.upper_bound_value.update(upper_bound_value)
|
||||
|
||||
State.initial_metric_list_received = True
|
||||
print_with_time("Inside message handler for metrics_to predict")
|
||||
application_state.initial_metric_list_received = True
|
||||
|
||||
individual_application_state[application_name] = application_state
|
||||
EsPredictorState.individual_application_state.update(individual_application_state)
|
||||
#body = json.loads(body)
|
||||
#for element in body:
|
||||
# State.metrics_to_predict.append(element["metric"])
|
||||
|
||||
elif address == 'test.exponentialsmoothing':
|
||||
State.testing_prediction_functionality = True
|
||||
|
||||
elif (address).startswith(EsPredictorState.FORECASTING_CONTROL_PREFIX):
|
||||
address = address.replace(EsPredictorState.FORECASTING_CONTROL_PREFIX, "", 1)
|
||||
logging.info("The address is " + address)
|
||||
|
||||
|
||||
if address == 'test.exponentialsmoothing':
|
||||
EsPredictorState.testing_prediction_functionality = True
|
||||
|
||||
elif address == 'start_forecasting.exponentialsmoothing':
|
||||
try:
|
||||
State.metrics_to_predict = body["metrics"]
|
||||
print_with_time("Received request to start predicting the following metrics: "+ ",".join(State.metrics_to_predict))
|
||||
State.broker_publishers = []
|
||||
for metric in State.metrics_to_predict:
|
||||
State.broker_publishers.append (PredictionPublisher(metric))
|
||||
State.publishing_connector = connector.EXN('publishing_exsmoothing', handler=Bootstrap(),#consumers=list(State.broker_consumers),
|
||||
consumers=[],
|
||||
publishers=State.broker_publishers,
|
||||
url="localhost",
|
||||
port="5672",
|
||||
username="admin",
|
||||
password="admin"
|
||||
)
|
||||
application_name = body["name"]
|
||||
message_version = 0
|
||||
if (not "version" in body):
|
||||
logging.info("There was an issue in finding the message version in the body of the start forecasting message, assuming it is 1")
|
||||
message_version = 1
|
||||
else:
|
||||
message_version = body["version"]
|
||||
if (application_name in EsPredictorState.individual_application_state) and (message_version <= EsPredictorState.individual_application_state[application_name].message_version):
|
||||
application_state = EsPredictorState.individual_application_state[application_name]
|
||||
else:
|
||||
EsPredictorState.individual_application_state[application_name] = ApplicationState(application_name,message_version)
|
||||
application_state = EsPredictorState.individual_application_state[application_name]
|
||||
|
||||
thread = threading.Thread(target=State.publishing_connector.start,args=())
|
||||
if (not application_state.start_forecasting) or ((application_state.metrics_to_predict is not None) and (len(application_state.metrics_to_predict)<=len(body["metrics"]))):
|
||||
application_state.metrics_to_predict = body["metrics"]
|
||||
print_with_time("Received request to start predicting the following metrics: "+ ",".join(application_state.metrics_to_predict)+" for application "+application_name+", proceeding with the prediction process")
|
||||
else:
|
||||
application_state.metrics_to_predict = body["metrics"]
|
||||
print_with_time("Received request to start predicting the following metrics: "+ body["metrics"]+" for application "+application_name+"but it was perceived as a duplicate")
|
||||
return
|
||||
application_state.broker_publishers = []
|
||||
for metric in application_state.metrics_to_predict:
|
||||
EsPredictorState.broker_publishers.append (PredictionPublisher(application_name,metric))
|
||||
EsPredictorState.publishing_connector = connector.EXN('publishing_'+EsPredictorState.forecaster_name+'-'+application_name, handler=BootStrap(), #consumers=list(State.broker_consumers),
|
||||
consumers=[],
|
||||
publishers=EsPredictorState.broker_publishers,
|
||||
url=EsPredictorState.broker_address,
|
||||
port=EsPredictorState.broker_port,
|
||||
username=EsPredictorState.broker_username,
|
||||
password=EsPredictorState.broker_password
|
||||
)
|
||||
#EsPredictorState.publishing_connector.start()
|
||||
thread = threading.Thread(target=EsPredictorState.publishing_connector.start, args=())
|
||||
thread.start()
|
||||
|
||||
except Exception as e:
|
||||
print_with_time("Could not load json object to process the start forecasting message \n"+str(body))
|
||||
print(traceback.format_exc())
|
||||
return
|
||||
|
||||
#if (not State.initial_metric_list_received):
|
||||
@ -301,49 +398,53 @@ class Bootstrap(connector.ConnectorHandler):
|
||||
# return
|
||||
|
||||
try:
|
||||
Bootstrap.start_forecasting = True
|
||||
State.epoch_start = body["epoch_start"]
|
||||
prediction_horizon = int(body["prediction_horizon"])
|
||||
State.next_prediction_time = update_prediction_time(State.epoch_start,prediction_horizon,State.prediction_processing_time_safety_margin_seconds) # State.next_prediction_time was assigned the value of State.epoch_start here, but this re-initializes targeted prediction times after each start_forecasting message, which is not desired necessarily
|
||||
print_with_time("A start_forecasting message has been received, epoch start and prediction horizon are "+str(State.epoch_start)+", and "+str(prediction_horizon)+ " seconds respectively")
|
||||
application_state = EsPredictorState.individual_application_state[application_name]
|
||||
application_state.start_forecasting = True
|
||||
application_state.epoch_start = body["epoch_start"]
|
||||
application_state.prediction_horizon = int(body["prediction_horizon"])
|
||||
application_state.next_prediction_time = update_prediction_time(application_state.epoch_start,application_state.prediction_horizon,EsPredictorState.prediction_processing_time_safety_margin_seconds) # State.next_prediction_time was assigned the value of State.epoch_start here, but this re-initializes targeted prediction times after each start_forecasting message, which is not desired necessarily
|
||||
print_with_time("A start_forecasting message has been received, epoch start and prediction horizon are "+str(application_state.epoch_start)+", and "+str(application_state.prediction_horizon)+ " seconds respectively")
|
||||
except Exception as e:
|
||||
print_with_time("Problem while retrieving epoch start and/or prediction_horizon")
|
||||
print(traceback.format_exc())
|
||||
return
|
||||
|
||||
with open(State.configuration_file_location, "r+b") as f:
|
||||
with open(EsPredictorState.configuration_file_location, "r+b") as f:
|
||||
|
||||
State.configuration_details.load(f, "utf-8")
|
||||
EsPredictorState.configuration_details.load(f, "utf-8")
|
||||
|
||||
# Do stuff with the p object...
|
||||
initial_seconds_aggregation_value, metadata = State.configuration_details["number_of_seconds_to_aggregate_on"]
|
||||
initial_seconds_aggregation_value, metadata = EsPredictorState.configuration_details["number_of_seconds_to_aggregate_on"]
|
||||
initial_seconds_aggregation_value = int(initial_seconds_aggregation_value)
|
||||
|
||||
if (prediction_horizon<initial_seconds_aggregation_value):
|
||||
print_with_time("Changing number_of_seconds_to_aggregate_on to "+str(prediction_horizon)+" from its initial value "+str(initial_seconds_aggregation_value))
|
||||
State.configuration_details["number_of_seconds_to_aggregate_on"] = str(prediction_horizon)
|
||||
if (application_state.prediction_horizon<initial_seconds_aggregation_value):
|
||||
print_with_time("Changing number_of_seconds_to_aggregate_on to "+str(application_state.prediction_horizon)+" from its initial value "+str(initial_seconds_aggregation_value))
|
||||
EsPredictorState.configuration_details["number_of_seconds_to_aggregate_on"] = str(application_state.prediction_horizon)
|
||||
|
||||
f.seek(0)
|
||||
f.truncate(0)
|
||||
State.configuration_details.store(f, encoding="utf-8")
|
||||
EsPredictorState.configuration_details.store(f, encoding="utf-8")
|
||||
|
||||
|
||||
maximum_time_required_for_prediction = State.prediction_processing_time_safety_margin_seconds #initialization, assuming X seconds processing time to derive a first prediction
|
||||
maximum_time_required_for_prediction = EsPredictorState.prediction_processing_time_safety_margin_seconds #initialization, assuming X seconds processing time to derive a first prediction
|
||||
if ((self.prediction_thread is None) or (not self.prediction_thread.is_alive())):
|
||||
self.prediction_thread = threading.Thread(target = calculate_and_publish_predictions, args =[prediction_horizon,maximum_time_required_for_prediction])
|
||||
self.prediction_thread = threading.Thread(target = calculate_and_publish_predictions, args =[application_state,maximum_time_required_for_prediction])
|
||||
self.prediction_thread.start()
|
||||
|
||||
#waitfor(first period)
|
||||
|
||||
elif address == 'stop_forecasting.exponentialsmoothing':
|
||||
#waitfor(first period)
|
||||
application_name = body["name"]
|
||||
application_state = EsPredictorState.individual_application_state[application_name]
|
||||
print_with_time("Received message to stop predicting some of the metrics")
|
||||
metrics_to_remove = json.loads(body)["metrics"]
|
||||
for metric in metrics_to_remove:
|
||||
if (State.metrics_to_predict.__contains__(metric)):
|
||||
if (application_state.metrics_to_predict.__contains__(metric)):
|
||||
print_with_time("Stopping generating predictions for metric "+metric)
|
||||
State.metrics_to_predict.remove(metric)
|
||||
if len(State.metrics_to_predict)==0:
|
||||
Bootstrap.start_forecasting = False
|
||||
application_state.metrics_to_predict.remove(metric)
|
||||
if len(application_state.metrics_to_predict)==0:
|
||||
EsPredictorState.individual_application_state[application_name].start_forecasting = False
|
||||
self.prediction_thread.join()
|
||||
|
||||
else:
|
||||
@ -354,16 +455,15 @@ class Bootstrap(connector.ConnectorHandler):
|
||||
def get_dataset_file(attribute):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
os.chdir("exponential-smoothing-predictor/src/r_predictors")
|
||||
State.configuration_file_location = sys.argv[1]
|
||||
def main():
|
||||
EsPredictorState.configuration_file_location = sys.argv[1]
|
||||
Utilities.load_configuration()
|
||||
Utilities.update_influxdb_organization_id()
|
||||
# Subscribe to retrieve the metrics which should be used
|
||||
|
||||
|
||||
id = "exponentialsmoothing"
|
||||
State.disconnected = True
|
||||
EsPredictorState.disconnected = True
|
||||
|
||||
#while(True):
|
||||
# State.connection = messaging.morphemic.Connection('admin', 'admin')
|
||||
@ -378,39 +478,42 @@ if __name__ == "__main__":
|
||||
current_consumers = []
|
||||
|
||||
for topic in topics_to_subscribe:
|
||||
current_consumer = core.consumer.Consumer('monitoring_'+topic, topic, topic=True,fqdn=True)
|
||||
State.broker_consumers.append(current_consumer)
|
||||
current_consumer = core.consumer.Consumer(key='monitoring_'+topic,address=topic,handler=ConsumerHandler(), topic=True,fqdn=True)
|
||||
EsPredictorState.broker_consumers.append(current_consumer)
|
||||
current_consumers.append(current_consumer)
|
||||
State.subscribing_connector = connector.EXN('slovid', handler=Bootstrap(),
|
||||
#consumers=list(State.broker_consumers),
|
||||
consumers=State.broker_consumers,
|
||||
url="localhost",
|
||||
port="5672",
|
||||
username="admin",
|
||||
password="admin"
|
||||
)
|
||||
EsPredictorState.subscribing_connector = connector.EXN(EsPredictorState.forecaster_name, handler=BootStrap(),
|
||||
#consumers=list(State.broker_consumers),
|
||||
consumers=EsPredictorState.broker_consumers,
|
||||
url=EsPredictorState.broker_address,
|
||||
port=EsPredictorState.broker_port,
|
||||
username=EsPredictorState.broker_username,
|
||||
password=EsPredictorState.broker_password
|
||||
)
|
||||
|
||||
|
||||
#connector.start()
|
||||
thread = threading.Thread(target=State.subscribing_connector.start,args=())
|
||||
thread = threading.Thread(target=EsPredictorState.subscribing_connector.start, args=())
|
||||
thread.start()
|
||||
State.disconnected = False;
|
||||
EsPredictorState.disconnected = False;
|
||||
|
||||
print_with_time("Checking (EMS) broker connectivity state, possibly ready to start")
|
||||
if (State.disconnected or State.check_stale_connection()):
|
||||
if (EsPredictorState.disconnected or EsPredictorState.check_stale_connection()):
|
||||
try:
|
||||
#State.connection.disconnect() #required to avoid the already connected exception
|
||||
#State.connection.connect()
|
||||
State.disconnected = True
|
||||
EsPredictorState.disconnected = True
|
||||
print_with_time("Possible problem in the connection")
|
||||
except Exception as e:
|
||||
print_with_time("Encountered exception while trying to connect to broker")
|
||||
print(traceback.format_exc())
|
||||
State.disconnected = True
|
||||
EsPredictorState.disconnected = True
|
||||
time.sleep(5)
|
||||
continue
|
||||
State.disconnection_handler.acquire()
|
||||
State.disconnection_handler.wait()
|
||||
State.disconnection_handler.release()
|
||||
EsPredictorState.disconnection_handler.acquire()
|
||||
EsPredictorState.disconnection_handler.wait()
|
||||
EsPredictorState.disconnection_handler.release()
|
||||
|
||||
#State.connector.stop()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1 +0,0 @@
|
||||
from . import connector
|
@ -1,155 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from proton.handlers import MessagingHandler
|
||||
from proton.reactor import Container
|
||||
|
||||
from .core import context as core_context, state_publisher, schedule_publisher
|
||||
from .settings import base
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
class ConnectorHandler:
|
||||
def __init__(self):
|
||||
self.initialized = False
|
||||
|
||||
|
||||
def set_ready(self,ready, ctx:core_context.Context):
|
||||
self.initialized = ready
|
||||
self.ready(ctx)
|
||||
|
||||
def ready(self, ctx:core_context.Context):
|
||||
pass
|
||||
|
||||
def on_message(self, key, address, body, context, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
class CoreHandler(MessagingHandler):
|
||||
|
||||
def __init__(self,
|
||||
context,
|
||||
handler: ConnectorHandler,
|
||||
publishers = [],
|
||||
consumers = [],
|
||||
):
|
||||
super(CoreHandler, self).__init__()
|
||||
self.context=context
|
||||
self.publishers=publishers
|
||||
self.consumers=consumers
|
||||
self.handler = handler
|
||||
self.conn = None
|
||||
|
||||
def on_start(self, event) -> None:
|
||||
|
||||
self.conn = event.container.connect(self.context.connection)
|
||||
for publisher in self.publishers:
|
||||
_logger.info(f"{publisher.address} registering sender")
|
||||
address = self.context.build_address_from_link(publisher)
|
||||
publisher.set(event.container.create_sender(self.conn,address))
|
||||
self.context.register_publisher(publisher)
|
||||
_logger.debug(f"{self.context.base} Registering timer { hasattr(publisher, 'delay')}")
|
||||
if hasattr(publisher, "delay"):
|
||||
_logger.debug(f"{self.context.base} Registering timer")
|
||||
event.reactor.schedule(publisher.delay, self)
|
||||
|
||||
for consumer in self.consumers:
|
||||
address = self.context.build_address_from_link(consumer)
|
||||
_logger.info(f"{self.context.base} Registering consumer {address}")
|
||||
consumer.set(event.container.create_receiver(self.conn, address))
|
||||
self.context.register_consumers(consumer)
|
||||
|
||||
def on_sendable(self, event):
|
||||
if not self.handler.initialized:
|
||||
self.handler.set_ready(True, self.context)
|
||||
|
||||
def on_timer_task(self, event):
|
||||
_logger.debug(f"{self.context.base} On timer")
|
||||
for publisher in self._delay_publishers():
|
||||
publisher.send()
|
||||
event.reactor.schedule(publisher.delay, self)
|
||||
|
||||
def on_message(self, event):
|
||||
try:
|
||||
for consumer in self.consumers:
|
||||
if consumer.should_handle(event):
|
||||
_logger.debug(f"Received message: {event.message.address}")
|
||||
self.handler.on_message(consumer.key, event.message.address, event.message.body, self.context, event=event)
|
||||
except Exception as e:
|
||||
_logger.error(f"Received message: {e}")
|
||||
|
||||
|
||||
def close(self):
|
||||
if self.conn:
|
||||
self.conn.close()
|
||||
else:
|
||||
_logger.warning(f"{self.context.base} No open connection")
|
||||
|
||||
def _delay_publishers(self):
|
||||
return [p for p in self.publishers if hasattr(p,'delay')]
|
||||
|
||||
|
||||
class EXN:
|
||||
def __init__(self, component=None,
|
||||
handler:ConnectorHandler = None,
|
||||
publishers=[],
|
||||
consumers=[],
|
||||
**kwargs):
|
||||
|
||||
# Load .env file
|
||||
load_dotenv()
|
||||
|
||||
# Validate and set connector
|
||||
if not component:
|
||||
_logger.error("Component cannot be empty or None")
|
||||
raise ValueError("Component cannot be empty or None")
|
||||
self.component = component
|
||||
self.handler = handler
|
||||
|
||||
self.url = kwargs.get('url',os.getenv('NEBULOUS_BROKER_URL'))
|
||||
self.port = kwargs.get('port', os.getenv('NEBULOUS_BROKER_PORT'))
|
||||
self.username = kwargs.get('username',os.getenv('NEBULOUS_BROKER_USERNAME'))
|
||||
self.password = kwargs.get('password', os.getenv('NEBULOUS_BROKER_PASSWORD'))
|
||||
|
||||
# Validate attributes
|
||||
if not self.url:
|
||||
_logger.error("URL cannot be empty or None")
|
||||
raise ValueError("URL cannot be empty or None")
|
||||
if not self.port:
|
||||
_logger.error("PORT cannot be empty or None")
|
||||
raise ValueError("PORT cannot be empty or None")
|
||||
if not self.username:
|
||||
_logger.error("USERNAME cannot be empty or None")
|
||||
raise ValueError("USERNAME cannot be empty or None")
|
||||
if not self.password:
|
||||
_logger.error("PASSWORD cannot be empty or None")
|
||||
raise ValueError("PASSWORD cannot be empty or None")
|
||||
|
||||
ctx = core_context.Context(
|
||||
connection=f"{self.url}:{self.port}",
|
||||
base=f"{base.NEBULOUS_BASE_NAME}.{self.component}",
|
||||
)
|
||||
|
||||
if kwargs.get("enable_state",False):
|
||||
publishers.append(state_publisher.Publisher())
|
||||
|
||||
if kwargs.get("enable_health",False):
|
||||
publishers.append(schedule_publisher.Publisher(
|
||||
base.NEBULOUS_DEFAULT_HEALTH_CHECK_TIMEOUT,
|
||||
'health',
|
||||
'health',
|
||||
True))
|
||||
|
||||
core_handler = CoreHandler(
|
||||
ctx,
|
||||
handler,
|
||||
publishers,
|
||||
consumers
|
||||
)
|
||||
|
||||
self.container = Container(core_handler)
|
||||
|
||||
def start(self):
|
||||
self.container.run()
|
@ -1,17 +0,0 @@
|
||||
import datetime
|
||||
|
||||
from proton import Message, Event
|
||||
from . import link
|
||||
import logging
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Consumer(link.Link):
|
||||
|
||||
def on_message(self, body, **kwargs):
|
||||
_logger.debug(f"{self.address} Got {body} ")
|
||||
|
||||
def should_handle(self, event: Event):
|
||||
if event.link == self._link:
|
||||
return True
|
@ -1,63 +0,0 @@
|
||||
from . import link
|
||||
|
||||
|
||||
class Context:
|
||||
|
||||
def __init__(self, connection, base):
|
||||
|
||||
self.connection = connection
|
||||
self.base = base
|
||||
self.publishers = {}
|
||||
self.consumers = {}
|
||||
|
||||
def get_publisher(self, key):
|
||||
if key in self.publishers:
|
||||
return self.publishers[key]
|
||||
return None
|
||||
|
||||
def has_publisher(self, key):
|
||||
return key in self.publishers
|
||||
|
||||
def has_consumer(self, key):
|
||||
return key in self.consumers
|
||||
|
||||
def register_publisher(self, publisher):
|
||||
self.publishers[publisher.key] = publisher
|
||||
|
||||
def register_consumers(self, consumer):
|
||||
self.consumers[consumer.key] = consumer
|
||||
|
||||
def build_address_from_link(self, link: link.Link):
|
||||
|
||||
if link.fqdn:
|
||||
address = link.address
|
||||
if link.topic and not link.address.startswith("topic://"):
|
||||
address = f"topic://{address}"
|
||||
return address
|
||||
|
||||
address = f"{self.base}.{link.address}"
|
||||
if link.topic:
|
||||
address = f"topic://{address}"
|
||||
|
||||
return address
|
||||
|
||||
def match_address(self, l: link.Link, event):
|
||||
|
||||
if not event \
|
||||
or not event.message \
|
||||
or not event.message.address:
|
||||
return False
|
||||
|
||||
address = self.build_address_from_link(l)
|
||||
return address == event.message.address
|
||||
|
||||
def build_address(self, *actions, topic=False):
|
||||
|
||||
if len(actions) <= 0:
|
||||
return self.base
|
||||
|
||||
address = f"{self.base}.{'.'.join(actions)}"
|
||||
if topic:
|
||||
address = f"topic://{address}"
|
||||
|
||||
return address
|
@ -1,14 +0,0 @@
|
||||
import logging
|
||||
|
||||
from . import publisher
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Publisher(publisher.Publisher):
|
||||
send_next = False
|
||||
delay = 15
|
||||
|
||||
def __init__(self, delay, key, address, topic=False):
|
||||
super(Publisher, self).__init__(key, address, topic)
|
||||
self.delay = delay
|
@ -1,2 +0,0 @@
|
||||
NEBULOUS_BASE_NAME="eu.nebulous"
|
||||
NEBULOUS_DEFAULT_HEALTH_CHECK_TIMEOUT=15
|
@ -0,0 +1,117 @@
|
||||
import logging
|
||||
import time
|
||||
import traceback
|
||||
|
||||
import requests
|
||||
import json
|
||||
|
||||
from runtime.operational_status.EsPredictorState import EsPredictorState
|
||||
from runtime.utilities.InfluxDBConnector import InfluxDBConnector
|
||||
from runtime.utilities.Utilities import Utilities
|
||||
from dateutil import parser
|
||||
|
||||
|
||||
class ApplicationState:
|
||||
|
||||
#Forecaster variables
|
||||
|
||||
def get_prediction_data_filename(self,configuration_file_location,metric_name):
|
||||
from jproperties import Properties
|
||||
p = Properties()
|
||||
with open(configuration_file_location, "rb") as f:
|
||||
p.load(f, "utf-8")
|
||||
path_to_datasets, metadata = p["path_to_datasets"]
|
||||
#application_name, metadata = p["application_name"]
|
||||
path_to_datasets = Utilities.fix_path_ending(path_to_datasets)
|
||||
return "" + str(path_to_datasets) + str(self.application_name) + "_"+metric_name+ ".csv"
|
||||
def __init__(self,application_name, message_version):
|
||||
self.message_version = message_version
|
||||
self.application_name = application_name
|
||||
self.influxdb_bucket = EsPredictorState.application_name_prefix+application_name+"_bucket"
|
||||
token = EsPredictorState.influxdb_token
|
||||
|
||||
list_bucket_url = 'http://' + EsPredictorState.influxdb_hostname + ':8086/api/v2/buckets?name='+self.influxdb_bucket
|
||||
create_bucket_url = 'http://' + EsPredictorState.influxdb_hostname + ':8086/api/v2/buckets'
|
||||
headers = {
|
||||
'Authorization': 'Token {}'.format(token),
|
||||
'Content-Type': 'application/json',
|
||||
'Accept': 'application/json'
|
||||
}
|
||||
data = {
|
||||
'name': self.influxdb_bucket,
|
||||
'orgID': EsPredictorState.influxdb_organization_id,
|
||||
'retentionRules': [
|
||||
{
|
||||
'type': 'expire',
|
||||
'everySeconds': 2592000 #30 days (30*24*3600)
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = requests.get(list_bucket_url, headers=headers)
|
||||
|
||||
logging.info("The response for listing a possibly existing bucket is "+str(response.status_code)+" for application "+application_name)
|
||||
if ((response.status_code==200) and ("buckets" in response.json()) and (len(response.json()["buckets"])>0)):
|
||||
logging.info("The bucket already existed for the particular application, skipping its creation...")
|
||||
else:
|
||||
logging.info("The response in the request to list a bucket is "+str(response.json()))
|
||||
logging.info("The bucket did not exist for the particular application, creation in process...")
|
||||
response = requests.post(create_bucket_url, headers=headers, data=json.dumps(data))
|
||||
logging.info("The response for creating a new bucket is "+str(response.status_code))
|
||||
self.start_forecasting = False # Whether the component should start (or keep on) forecasting
|
||||
self.prediction_data_filename = application_name+".csv"
|
||||
self.dataset_file_name = "exponential_smoothing_dataset_"+application_name+".csv"
|
||||
self.metrics_to_predict = []
|
||||
self.epoch_start = 0
|
||||
self.next_prediction_time = 0
|
||||
self.prediction_horizon = 120
|
||||
self.previous_prediction = None
|
||||
self.initial_metric_list_received = False
|
||||
self.lower_bound_value = {}
|
||||
self.upper_bound_value = {}
|
||||
|
||||
|
||||
def update_monitoring_data(self):
|
||||
#query(metrics_to_predict,number_of_days_for_which_data_was_retrieved)
|
||||
#save_new_file()
|
||||
Utilities.print_with_time("Starting dataset creation process...")
|
||||
|
||||
try:
|
||||
"""
|
||||
Deprecated functionality to retrieve dataset creation details. Relevant functionality moved inside the load configuration method
|
||||
influxdb_hostname = os.environ.get("INFLUXDB_HOSTNAME","localhost")
|
||||
influxdb_port = int(os.environ.get("INFLUXDB_PORT","8086"))
|
||||
influxdb_username = os.environ.get("INFLUXDB_USERNAME","morphemic")
|
||||
influxdb_password = os.environ.get("INFLUXDB_PASSWORD","password")
|
||||
influxdb_dbname = os.environ.get("INFLUXDB_DBNAME","morphemic")
|
||||
influxdb_org = os.environ.get("INFLUXDB_ORG","morphemic")
|
||||
application_name = "default_application"
|
||||
"""
|
||||
for metric_name in self.metrics_to_predict:
|
||||
time_interval_to_get_data_for = str(EsPredictorState.number_of_days_to_use_data_from) + "d"
|
||||
print_data_from_db = True
|
||||
query_string = 'from(bucket: "'+self.influxdb_bucket+'") |> range(start:-'+time_interval_to_get_data_for+') |> filter(fn: (r) => r["_measurement"] == "'+metric_name+'")'
|
||||
influx_connector = InfluxDBConnector()
|
||||
print("performing query")
|
||||
current_time = time.time()
|
||||
result = influx_connector.client.query_api().query(query_string, EsPredictorState.influxdb_organization)
|
||||
elapsed_time = time.time()-current_time
|
||||
print("performed query, it took "+str(elapsed_time) + " seconds")
|
||||
#print(result.to_values())
|
||||
with open(self.get_prediction_data_filename(EsPredictorState.configuration_file_location, metric_name), 'w') as file:
|
||||
for table in result:
|
||||
#print header row
|
||||
file.write("Timestamp,ems_time,"+metric_name+"\r\n")
|
||||
for record in table.records:
|
||||
dt = parser.isoparse(str(record.get_time()))
|
||||
epoch_time = int(dt.timestamp())
|
||||
metric_value = record.get_value()
|
||||
if(print_data_from_db):
|
||||
file.write(str(epoch_time)+","+str(epoch_time)+","+str(metric_value)+"\r\n")
|
||||
# Write the string data to the file
|
||||
|
||||
|
||||
|
||||
except Exception as e:
|
||||
Utilities.print_with_time("Could not create new dataset as an exception was thrown")
|
||||
print(traceback.format_exc())
|
@ -4,43 +4,46 @@
|
||||
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
# file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
import threading
|
||||
import threading, logging
|
||||
|
||||
from influxdb_client import InfluxDBClient
|
||||
from jproperties import Properties
|
||||
|
||||
class State:
|
||||
class EsPredictorState:
|
||||
|
||||
"""
|
||||
The name of the predictor
|
||||
"""
|
||||
forecaster_name = "exponentialsmoothing"
|
||||
"""
|
||||
A dictionary containing statistics on the application state of individual applications
|
||||
"""
|
||||
individual_application_state = {}
|
||||
"""
|
||||
Fail-safe default values introduced below
|
||||
"""
|
||||
|
||||
prediction_data_filename = "default_application.csv"
|
||||
MONITORING_DATA_PREFIX = "monitoring"
|
||||
FORECASTING_CONTROL_PREFIX = "forecasting"
|
||||
application_name_prefix = "nebulous_"
|
||||
GENERAL_TOPIC_PREFIX = "eu.nebulouscloud."
|
||||
MONITORING_DATA_PREFIX = "monitoring."
|
||||
FORECASTING_CONTROL_PREFIX = "forecasting."
|
||||
|
||||
#Used to create the dataset from the InfluxDB
|
||||
application_name = "default_application"
|
||||
influxdb_bucket = "nebulous"
|
||||
influxdb_organization = "nebulous"
|
||||
influxdb_token = "tzIfpbU9b77quyvN0yHIbWltSh1c1371-o9nl_wJYaeo5TWdk5txyxXhp2iaLVMvOvf020HnEEAkE0yy5AllKQ=="
|
||||
influxdb_dbname = "nebulous"
|
||||
influxdb_password = "adminadmin"
|
||||
influxdb_username = "admin"
|
||||
influxdb_organization = "my-org"
|
||||
influxdb_organization_id = "e0033247dcca0c54"
|
||||
influxdb_token = "my-super-secret-auth-token"
|
||||
influxdb_password = "my-password"
|
||||
influxdb_username = "my-user"
|
||||
influxdb_port = 8086
|
||||
influxdb_hostname = "localhost"
|
||||
path_to_datasets = "./datasets"
|
||||
dataset_file_name = "exponential_smoothing_dataset.csv"
|
||||
number_of_days_to_use_data_from = 365
|
||||
|
||||
#Forecaster variables
|
||||
metrics_to_predict = []
|
||||
epoch_start = 0
|
||||
next_prediction_time = 0
|
||||
previous_prediction = None
|
||||
configuration_file_location="prediction_configuration.properties"
|
||||
|
||||
configuration_file_location="exponential-smoothing-predictor/prediction_configuration.properties"
|
||||
configuration_details = Properties()
|
||||
prediction_processing_time_safety_margin_seconds = 20
|
||||
disconnected = True
|
||||
disconnection_handler = threading.Condition()
|
||||
initial_metric_list_received = False
|
||||
testing_prediction_functionality = False
|
||||
total_time_intervals_to_predict = 8
|
||||
|
||||
@ -59,4 +62,6 @@ class State:
|
||||
@staticmethod
|
||||
#TODO inspect State.connection
|
||||
def check_stale_connection():
|
||||
return (not State.subscribing_connector)
|
||||
return (not EsPredictorState.subscribing_connector)
|
||||
|
||||
|
@ -2,7 +2,7 @@ from influxdb_client import InfluxDBClient, Point, WritePrecision
|
||||
from datetime import datetime
|
||||
from influxdb_client.client.write_api import SYNCHRONOUS
|
||||
|
||||
from runtime.operational_status.State import State
|
||||
from runtime.operational_status.EsPredictorState import EsPredictorState
|
||||
|
||||
#import influxdb_client, os, time
|
||||
#from influxdb_client import InfluxDBClient, Point, WritePrecision
|
||||
@ -28,32 +28,32 @@ from runtime.operational_status.State import State
|
||||
# time.sleep(1) # separate points by 1 second
|
||||
|
||||
|
||||
data = [
|
||||
{
|
||||
"measurement": "temperature",
|
||||
"tags": {"location": "Prague"},
|
||||
"fields": {"temperature": 25.3}
|
||||
}
|
||||
]
|
||||
#data = [
|
||||
# {
|
||||
# "measurement": "temperature",
|
||||
# "tags": {"location": "Prague"},
|
||||
# "fields": {"temperature": 25.3}
|
||||
# }
|
||||
#]
|
||||
|
||||
|
||||
|
||||
|
||||
class InfluxDBConnector:
|
||||
client = InfluxDBClient(url="http://"+State.influxdb_hostname+":"+str(State.influxdb_port), token=State.influxdb_token, org=State.influxdb_organization)
|
||||
client = InfluxDBClient(url="http://" + EsPredictorState.influxdb_hostname + ":" + str(EsPredictorState.influxdb_port), token=EsPredictorState.influxdb_token, org=EsPredictorState.influxdb_organization)
|
||||
write_api = client.write_api(write_options=SYNCHRONOUS)
|
||||
|
||||
def InfluxDBConnector(self):
|
||||
pass
|
||||
def write_data(self,data):
|
||||
self.write_api.write(bucket=State.influxdb_bucket, org=State.influxdb_organization, record=data, write_precision=WritePrecision.S)
|
||||
def write_data(self,data,bucket):
|
||||
self.write_api.write(bucket=bucket, org=EsPredictorState.influxdb_organization, record=data, write_precision=WritePrecision.S)
|
||||
|
||||
def get_data(self):
|
||||
query_api = self.client.query_api()
|
||||
query = """from(bucket: "nebulous")
|
||||
|> range(start: -1m)
|
||||
|> filter(fn: (r) => r._measurement == "temperature")"""
|
||||
tables = query_api.query(query, org=State.influxdb_organization)
|
||||
tables = query_api.query(query, org=EsPredictorState.influxdb_organization)
|
||||
|
||||
for table in tables:
|
||||
for record in table.records:
|
||||
|
@ -1,11 +1,11 @@
|
||||
from runtime.exn import core
|
||||
from exn import core
|
||||
|
||||
|
||||
class PredictionPublisher(core.publisher.Publisher):
|
||||
metric_name = ""
|
||||
def __init__(self,metric_name):
|
||||
super().__init__('publisher_'+metric_name, 'eu.nebulouscloud.preliminary_predicted.'+metric_name, True,True)
|
||||
def __init__(self,application_name,metric_name):
|
||||
super().__init__('publisher_'+application_name+'-'+metric_name, 'eu.nebulouscloud.preliminary_predicted.'+metric_name, True,True)
|
||||
self.metric_name = metric_name
|
||||
|
||||
def send(self, body={}):
|
||||
def send(self, body={}, application=""):
|
||||
super(PredictionPublisher, self).send(body)
|
||||
|
@ -7,17 +7,14 @@
|
||||
import pathlib
|
||||
#from morphemic.dataset import DatasetMaker
|
||||
import datetime
|
||||
import time,os
|
||||
import logging,os
|
||||
from dateutil import parser
|
||||
from influxdb_client import InfluxDBClient
|
||||
|
||||
from runtime.operational_status.State import State
|
||||
from runtime.operational_status.EsPredictorState import EsPredictorState
|
||||
from runtime.utilities.InfluxDBConnector import InfluxDBConnector
|
||||
|
||||
|
||||
class DatasetMaker:
|
||||
pass
|
||||
|
||||
|
||||
class Utilities:
|
||||
|
||||
@staticmethod
|
||||
@ -27,85 +24,39 @@ class Utilities:
|
||||
|
||||
@staticmethod
|
||||
def load_configuration():
|
||||
with open(State.configuration_file_location,'rb') as config_file:
|
||||
State.configuration_details.load(config_file)
|
||||
with open(EsPredictorState.configuration_file_location, 'rb') as config_file:
|
||||
EsPredictorState.configuration_details.load(config_file)
|
||||
#prediction_horizon = configuration_details.get("prediction_horizon")
|
||||
State.dataset_file_name = State.configuration_details.get("input_data_file").data
|
||||
State.number_of_days_to_use_data_from = int(State.configuration_details.get("number_of_days_to_use_data_from").data)
|
||||
State.prediction_processing_time_safety_margin_seconds = int(State.configuration_details.get("prediction_processing_time_safety_margin_seconds").data)
|
||||
State.testing_prediction_functionality = State.configuration_details.get("testing_prediction_functionality").data.lower() == "true"
|
||||
State.path_to_datasets = State.configuration_details.get("path_to_datasets").data
|
||||
State.broker_address = State.configuration_details.get("broker_address").data
|
||||
State.broker_port = int(State.configuration_details.get("broker_port").data)
|
||||
State.broker_username = State.configuration_details.get("broker_username").data
|
||||
State.broker_password = State.configuration_details.get("broker_password").data
|
||||
EsPredictorState.number_of_days_to_use_data_from = int(EsPredictorState.configuration_details.get("number_of_days_to_use_data_from").data)
|
||||
EsPredictorState.prediction_processing_time_safety_margin_seconds = int(EsPredictorState.configuration_details.get("prediction_processing_time_safety_margin_seconds").data)
|
||||
EsPredictorState.testing_prediction_functionality = EsPredictorState.configuration_details.get("testing_prediction_functionality").data.lower() == "true"
|
||||
EsPredictorState.path_to_datasets = EsPredictorState.configuration_details.get("path_to_datasets").data
|
||||
EsPredictorState.broker_address = EsPredictorState.configuration_details.get("broker_address").data
|
||||
EsPredictorState.broker_port = int(EsPredictorState.configuration_details.get("broker_port").data)
|
||||
EsPredictorState.broker_username = EsPredictorState.configuration_details.get("broker_username").data
|
||||
EsPredictorState.broker_password = EsPredictorState.configuration_details.get("broker_password").data
|
||||
|
||||
State.influxdb_hostname = State.configuration_details.get("INFLUXDB_HOSTNAME").data
|
||||
State.influxdb_port = int(State.configuration_details.get("INFLUXDB_PORT").data)
|
||||
State.influxdb_username = State.configuration_details.get("INFLUXDB_USERNAME").data
|
||||
State.influxdb_password = State.configuration_details.get("INFLUXDB_PASSWORD").data
|
||||
State.influxdb_dbname = State.configuration_details.get("INFLUXDB_DBNAME").data
|
||||
State.influxdb_org = State.configuration_details.get("INFLUXDB_ORG").data
|
||||
State.application_name = State.configuration_details.get("APP_NAME").data
|
||||
EsPredictorState.influxdb_hostname = EsPredictorState.configuration_details.get("INFLUXDB_HOSTNAME").data
|
||||
EsPredictorState.influxdb_port = int(EsPredictorState.configuration_details.get("INFLUXDB_PORT").data)
|
||||
EsPredictorState.influxdb_username = EsPredictorState.configuration_details.get("INFLUXDB_USERNAME").data
|
||||
EsPredictorState.influxdb_password = EsPredictorState.configuration_details.get("INFLUXDB_PASSWORD").data
|
||||
EsPredictorState.influxdb_org = EsPredictorState.configuration_details.get("INFLUXDB_ORG").data
|
||||
#This method accesses influx db to retrieve the most recent metric values.
|
||||
@staticmethod
|
||||
def update_monitoring_data():
|
||||
#query(metrics_to_predict,number_of_days_for_which_data_was_retrieved)
|
||||
#save_new_file()
|
||||
Utilities.print_with_time("Starting dataset creation process...")
|
||||
|
||||
try:
|
||||
"""
|
||||
Deprecated functionality to retrieve dataset creation details. Relevant functionality moved inside the load configuration method
|
||||
influxdb_hostname = os.environ.get("INFLUXDB_HOSTNAME","localhost")
|
||||
influxdb_port = int(os.environ.get("INFLUXDB_PORT","8086"))
|
||||
influxdb_username = os.environ.get("INFLUXDB_USERNAME","morphemic")
|
||||
influxdb_password = os.environ.get("INFLUXDB_PASSWORD","password")
|
||||
influxdb_dbname = os.environ.get("INFLUXDB_DBNAME","morphemic")
|
||||
influxdb_org = os.environ.get("INFLUXDB_ORG","morphemic")
|
||||
application_name = "default_application"
|
||||
"""
|
||||
metric_names = ["cpu_usage","ram_usage"]
|
||||
for metric_name in State.metrics_to_predict:
|
||||
time_interval_to_get_data_for = str(State.number_of_days_to_use_data_from)+"d"
|
||||
print_data_from_db = True
|
||||
query_string = 'from(bucket: "'+State.influxdb_bucket+'") |> range(start:-'+time_interval_to_get_data_for+') |> filter(fn: (r) => r["_measurement"] == "'+metric_name+'")'
|
||||
influx_connector = InfluxDBConnector()
|
||||
print("performing query")
|
||||
current_time = time.time()
|
||||
result = influx_connector.client.query_api().query(query_string,State.influxdb_organization)
|
||||
elapsed_time = time.time()-current_time
|
||||
print("performed query, it took "+str(elapsed_time) + " seconds")
|
||||
#print(result.to_values())
|
||||
with open(Utilities.get_prediction_data_filename(State.configuration_file_location,metric_name), 'w') as file:
|
||||
for table in result:
|
||||
#print header row
|
||||
file.write("Timestamp,ems_time,"+metric_name+"\r\n")
|
||||
for record in table.records:
|
||||
dt = parser.isoparse(str(record.get_time()))
|
||||
epoch_time = int(dt.timestamp())
|
||||
metric_value = record.get_value()
|
||||
if(print_data_from_db):
|
||||
file.write(str(epoch_time)+","+str(epoch_time)+","+str(metric_value)+"\r\n")
|
||||
# Write the string data to the file
|
||||
|
||||
|
||||
|
||||
except Exception as e:
|
||||
Utilities.print_with_time("Could not create new dataset as an exception was thrown")
|
||||
print(e)
|
||||
|
||||
@staticmethod
|
||||
def get_prediction_data_filename(configuration_file_location,metric_name):
|
||||
from jproperties import Properties
|
||||
p = Properties()
|
||||
with open(configuration_file_location, "rb") as f:
|
||||
p.load(f, "utf-8")
|
||||
path_to_datasets, metadata = p["path_to_datasets"]
|
||||
application_name, metadata = p["application_name"]
|
||||
path_to_datasets = Utilities.fix_path_ending(path_to_datasets)
|
||||
return "" + str(path_to_datasets) + str(application_name) + "_"+metric_name+ ".csv"
|
||||
def update_influxdb_organization_id():
|
||||
client = InfluxDBClient(url="http://" + EsPredictorState.influxdb_hostname + ":" + str(EsPredictorState.influxdb_port), token=EsPredictorState.influxdb_token)
|
||||
org_api = client.organizations_api()
|
||||
# List all organizations
|
||||
organizations = org_api.find_organizations()
|
||||
|
||||
# Find the organization by name and print its ID
|
||||
for org in organizations:
|
||||
if org.name == EsPredictorState.influxdb_organization:
|
||||
logging.info(f"Organization Name: {org.name}, ID: {org.id}")
|
||||
EsPredictorState.influxdb_organization_id = org.id
|
||||
break
|
||||
@staticmethod
|
||||
def fix_path_ending(path):
|
||||
if (path[-1] is os.sep):
|
||||
|
@ -18,7 +18,7 @@ setup(
|
||||
author_email="atsagkaropoulos@mail.ntua.gr",
|
||||
|
||||
# Packages
|
||||
packages=["r_predictors","runtime","runtime.exn","runtime.operational_status","runtime.utilities","runtime.predictions"],
|
||||
packages=["r_predictors","runtime","exn","exn.core","exn.handler","exn.settings","runtime.operational_status","runtime.utilities","runtime.predictions"],
|
||||
|
||||
# Include additional files into the package
|
||||
include_package_data=True,
|
||||
@ -37,4 +37,10 @@ setup(
|
||||
"python-slugify",
|
||||
"jproperties"
|
||||
],
|
||||
#package_dir={'': '.'},
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'start_exsmoothing = runtime.Predictor:main',
|
||||
],
|
||||
}
|
||||
)
|
||||
|
@ -14,9 +14,9 @@
|
||||
container_images:
|
||||
- context: exponential-smoothing-predictor
|
||||
registry: quay.io
|
||||
repository: quay.io/nebulous/exponential-smoothing-predictor-exponential-smoothing-predictor
|
||||
repository: quay.io/nebulous/exponential-smoothing-predictor
|
||||
namespace: nebulous
|
||||
repo_shortname: exponential-smoothing-predictor-exponential-smoothing-predictor
|
||||
repo_shortname: exponential-smoothing-predictor
|
||||
repo_description: ""
|
||||
|
||||
- job:
|
||||
|
Loading…
Reference in New Issue
Block a user