de22d6cbe2
fwaas_v2 extension is added in l3_agent.ini by default from stein. However with the newly introduced neutron-api configuration parameter enable-fwaas, the extension have to added only when it is set to true on neutron-api charm. neutron-api charm adds enabled-fwaas as relation data in the commit https://review.opendev.org/c/openstack/charm-neutron-api/+/806676. This patch removes special handling of fwaas_v2 as l3_extension_plugins is already updated in relation data based on neutron-api enable-fwaas configuration. Remove python3-neutron-fwaas in package list from stein release. The package is already part of dependency of neutron-l3-agent until Ussuri release and the dependency will be removed from Victoria release in package control files. Synced charmhelpers to get related changes https://github.com/juju/charm-helpers/pull/635 Partial-Bug: #1934129 Change-Id: I07db7fb7c2f00eaf4c0a5bcc082c73922b87d1c0 |
||
---|---|---|
actions | ||
files | ||
hooks | ||
lib | ||
templates | ||
tests | ||
unit_tests | ||
.gitignore | ||
.gitreview | ||
.project | ||
.pydevproject | ||
.stestr.conf | ||
.zuul.yaml | ||
actions.yaml | ||
charm-helpers-hooks.yaml | ||
config.yaml | ||
copyright | ||
hardening.yaml | ||
icon.svg | ||
Makefile | ||
metadata.yaml | ||
osci.yaml | ||
README.md | ||
requirements.txt | ||
revision | ||
setup.cfg | ||
test-requirements.txt | ||
tox.ini |
Overview
Neutron provides flexible software defined networking (SDN) for OpenStack.
This charm is designed to be used in conjunction with the rest of the OpenStack related charms in the charm store to virtualize the network that Nova Compute instances plug into.
Neutron supports a rich plugin/extension framework for propriety networking solutions and supports (in core) Nicira NVP, NEC, Cisco and others...
See the upstream Neutron documentation for more details.
Usage
In order to use Neutron with OpenStack, you will need to deploy the nova-compute and nova-cloud-controller charms with the network-manager configuration set to 'Neutron':
nova-cloud-controller:
network-manager: Neutron
This decision must be made prior to deploying OpenStack with Juju as Neutron is deployed baked into these charms from install onwards:
juju deploy nova-compute
juju deploy --config config.yaml nova-cloud-controller
juju deploy neutron-api
juju add-relation nova-compute nova-cloud-controller
juju add-relation neutron-api nova-cloud-controller
The Neutron Gateway can then be added to the deploying:
juju deploy neutron-gateway
juju add-relation neutron-gateway mysql
juju add-relation neutron-gateway rabbitmq-server
juju add-relation neutron-gateway nova-cloud-controller
juju add-relation neutron-gateway neutron-api
The gateway provides two key services; L3 network routing and DHCP services.
These are both required in a fully functional Neutron OpenStack deployment.
Configuration Options
Port Configuration
All network types (internal, external) are configured with bridge-mappings and data-port and the flat-network-providers configuration option of the neutron-api charm. Once deployed, you can configure the network specifics using neutron net-create.
If the device name is not consistent between hosts, you can specify the same bridge multiple times with MAC addresses instead of interface names. The charm will loop through the list and configure the first matching interface.
Basic configuration of a single external network, typically used as floating IP addresses combined with a GRE private network:
neutron-gateway:
bridge-mappings: physnet1:br-ex
data-port: br-ex:eth1
neutron-api:
flat-network-providers: physnet1
neutron net-create --provider:network_type flat \
--provider:physical_network physnet1 --router:external=true \
external
neutron router-gateway-set provider external
Alternative configuration with two networks, where the internal private network is directly connected to the gateway with public IP addresses but a floating IP address range is also offered.
neutron-gateway:
bridge-mappings: physnet1:br-data external:br-ex
data-port: br-data:eth1 br-ex:eth2
neutron-api:
flat-network-providers: physnet1 external
Alternative configuration with two external networks, one for public instance addresses and one for floating IP addresses. Both networks are on the same physical network connection (but they might be on different VLANs, that is configured later using neutron net-create).
neutron-gateway:
bridge-mappings: physnet1:br-data
data-port: br-data:eth1
neutron-api:
flat-network-providers: physnet1
neutron net-create --provider:network_type vlan \
--provider:segmentation_id 400 \
--provider:physical_network physnet1 --shared external
neutron net-create --provider:network_type vlan \
--provider:segmentation_id 401 \
--provider:physical_network physnet1 --shared --router:external=true \
floating
neutron router-gateway-set provider floating
This replaces the previous system of using ext-port, which always created a bridge called br-ex for external networks which was used implicitly by external router interfaces.
Note: if the 'data-port' config item is set, then the 'ext-port' option is ignored. This is to prevent misconfiguration of the charm. A warning is logged and the unit is marked as blocked in order to indicate that the charm is misconfigured.
Instance MTU
When using Open vSwitch plugin with GRE tunnels default MTU of 1500 can cause packet fragmentation due to GRE overhead. One solution is to increase the MTU on physical hosts and network equipment. When this is not possible or practical the charm's instance-mtu option can be used to reduce instance MTU via DHCP.
juju config neutron-gateway instance-mtu=1400
Note that this option was added in Havana and will be ignored in older releases.
Deferred service events
Operational or maintenance procedures applied to a cloud often lead to the restarting of various OpenStack services and/or the calling of certain charm hooks. Although normal, such events can be undesirable due to the service interruptions they can cause.
The deferred service events feature provides the operator the choice of preventing these service restarts and hook calls from occurring, which can then be resolved at a more opportune time.
See the Deferred service events page in the OpenStack Charms Deployment Guide for an in-depth treatment of this feature.