Fix PyScripts processing
The PyScript process in CloudKitty has been broken for a very long time. This patch introduces changes required to make it work again. Change-Id: I143ee6aa4352903921d2ab7b8d8468aedbdd6911
This commit is contained in:
parent
0c1eabc364
commit
ee99f7ef0d
@ -37,8 +37,8 @@ DATAPOINT_SCHEMA = voluptuous.Schema({
|
||||
voluptuous.Required('price', default=0):
|
||||
voluptuous.Coerce(str),
|
||||
},
|
||||
voluptuous.Required('groupby'): vutils.DictTypeValidator(str, str),
|
||||
voluptuous.Required('metadata'): vutils.DictTypeValidator(str, str),
|
||||
voluptuous.Required('groupby'): voluptuous.Coerce(dict),
|
||||
voluptuous.Required('metadata'): voluptuous.Coerce(dict),
|
||||
})
|
||||
|
||||
|
||||
|
@ -13,10 +13,15 @@
|
||||
# License for the specific language governing permissions and limitations
|
||||
# under the License.
|
||||
#
|
||||
from cloudkitty import dataframe
|
||||
from cloudkitty import rating
|
||||
from cloudkitty.rating.pyscripts.controllers import root as root_api
|
||||
from cloudkitty.rating.pyscripts.db import api as pyscripts_db_api
|
||||
|
||||
from oslo_log import log as logging
|
||||
|
||||
LOG = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PyScripts(rating.RatingProcessorBase):
|
||||
"""PyScripts rating module.
|
||||
@ -33,20 +38,17 @@ class PyScripts(rating.RatingProcessorBase):
|
||||
db_api = pyscripts_db_api.get_instance()
|
||||
|
||||
def __init__(self, tenant_id=None):
|
||||
# current scripts loaded to memory
|
||||
self._scripts = {}
|
||||
|
||||
self.load_scripts_in_memory()
|
||||
super(PyScripts, self).__init__(tenant_id)
|
||||
|
||||
def load_scripts_in_memory(self):
|
||||
db = pyscripts_db_api.get_instance()
|
||||
scripts_uuid_list = db.list_scripts()
|
||||
# Purge old entries
|
||||
scripts_to_purge = []
|
||||
for script_uuid in self._scripts.keys():
|
||||
if script_uuid not in scripts_uuid_list:
|
||||
scripts_to_purge.append(script_uuid)
|
||||
for script_uuid in scripts_to_purge:
|
||||
del self._scripts[script_uuid]
|
||||
self.purge_removed_scripts(scripts_uuid_list)
|
||||
|
||||
# Load or update script
|
||||
for script_uuid in scripts_uuid_list:
|
||||
script_db = db.get_script(uuid=script_uuid)
|
||||
@ -67,11 +69,31 @@ class PyScripts(rating.RatingProcessorBase):
|
||||
'code': code,
|
||||
'checksum': checksum})
|
||||
|
||||
def purge_removed_scripts(self, scripts_uuid_list):
|
||||
scripts_to_purge = self.get_all_script_to_remove(scripts_uuid_list)
|
||||
self.remove_purged_scripts(scripts_to_purge)
|
||||
|
||||
def get_all_script_to_remove(self, new_scripts_uuid_list):
|
||||
scripts_to_purge = []
|
||||
for script_uuid in self._scripts.keys():
|
||||
if script_uuid not in new_scripts_uuid_list:
|
||||
scripts_to_purge.append(script_uuid)
|
||||
return scripts_to_purge
|
||||
|
||||
def remove_purged_scripts(self, scripts_to_purge):
|
||||
for script_uuid in scripts_to_purge:
|
||||
LOG.info("Removing script [%s] from the script list to execute.",
|
||||
self._scripts[script_uuid])
|
||||
|
||||
del self._scripts[script_uuid]
|
||||
|
||||
def reload_config(self):
|
||||
"""Reload the module's configuration.
|
||||
|
||||
"""
|
||||
LOG.debug("Executing the reload of configurations.")
|
||||
self.load_scripts_in_memory()
|
||||
LOG.debug("Configurations reloaded.")
|
||||
|
||||
def start_script(self, code, data):
|
||||
context = {'data': data}
|
||||
@ -80,5 +102,14 @@ class PyScripts(rating.RatingProcessorBase):
|
||||
|
||||
def process(self, data):
|
||||
for script in self._scripts.values():
|
||||
data = self.start_script(script['code'], data)
|
||||
data_dict = data.as_dict(mutable=True)
|
||||
LOG.debug("Executing pyscript [%s] with data [%s].",
|
||||
script, data_dict)
|
||||
|
||||
data_output = self.start_script(script['code'], data_dict)
|
||||
|
||||
LOG.debug("Result [%s] for processing with pyscript [%s] with "
|
||||
"data [%s].", data_output, script, data_dict)
|
||||
|
||||
data = dataframe.DataFrame.from_dict(data_output)
|
||||
return data
|
||||
|
@ -75,8 +75,8 @@ tests:
|
||||
$.dataframes[0].resources[0].volume: "1"
|
||||
$.dataframes[0].resources[0].rating: "1.337"
|
||||
$.dataframes[0].resources[0].service: "cpu"
|
||||
$.dataframes[0].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[0].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[0].resources[0].desc.dummy: True
|
||||
$.dataframes[0].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[1].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[1].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[1].end: "2015-01-04T14:00:00"
|
||||
@ -84,8 +84,8 @@ tests:
|
||||
$.dataframes[1].resources[0].volume: "1"
|
||||
$.dataframes[1].resources[0].rating: "1.337"
|
||||
$.dataframes[1].resources[0].service: "cpu"
|
||||
$.dataframes[1].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[1].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[1].resources[0].desc.dummy: True
|
||||
$.dataframes[1].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[2].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[2].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[2].end: "2015-01-04T14:00:00"
|
||||
@ -93,8 +93,8 @@ tests:
|
||||
$.dataframes[2].resources[0].volume: "1"
|
||||
$.dataframes[2].resources[0].rating: "0.121"
|
||||
$.dataframes[2].resources[0].service: "image.size"
|
||||
$.dataframes[2].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[2].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[2].resources[0].desc.dummy: True
|
||||
$.dataframes[2].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[3].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[3].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[3].end: "2015-01-04T14:00:00"
|
||||
@ -102,8 +102,8 @@ tests:
|
||||
$.dataframes[3].resources[0].volume: "1"
|
||||
$.dataframes[3].resources[0].rating: "0.121"
|
||||
$.dataframes[3].resources[0].service: "image.size"
|
||||
$.dataframes[3].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[3].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[3].resources[0].desc.dummy: True
|
||||
$.dataframes[3].resources[0].desc.fake_meta: 1.0
|
||||
|
||||
- name: fetch data for the second tenant
|
||||
url: /v1/storage/dataframes
|
||||
@ -121,8 +121,8 @@ tests:
|
||||
$.dataframes[0].resources[0].volume: "1"
|
||||
$.dataframes[0].resources[0].rating: "1.337"
|
||||
$.dataframes[0].resources[0].service: "cpu"
|
||||
$.dataframes[0].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[0].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[0].resources[0].desc.dummy: True
|
||||
$.dataframes[0].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[1].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[1].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[1].end: "2015-01-04T14:00:00"
|
||||
@ -130,8 +130,8 @@ tests:
|
||||
$.dataframes[1].resources[0].volume: "1"
|
||||
$.dataframes[1].resources[0].rating: "1.337"
|
||||
$.dataframes[1].resources[0].service: "cpu"
|
||||
$.dataframes[1].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[1].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[1].resources[0].desc.dummy: True
|
||||
$.dataframes[1].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[2].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[2].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[2].end: "2015-01-04T14:00:00"
|
||||
@ -139,8 +139,8 @@ tests:
|
||||
$.dataframes[2].resources[0].volume: "1"
|
||||
$.dataframes[2].resources[0].rating: "0.121"
|
||||
$.dataframes[2].resources[0].service: "image.size"
|
||||
$.dataframes[2].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[2].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[2].resources[0].desc.dummy: True
|
||||
$.dataframes[2].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[3].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[3].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[3].end: "2015-01-04T14:00:00"
|
||||
@ -148,8 +148,8 @@ tests:
|
||||
$.dataframes[3].resources[0].volume: "1"
|
||||
$.dataframes[3].resources[0].rating: "0.121"
|
||||
$.dataframes[3].resources[0].service: "image.size"
|
||||
$.dataframes[3].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[3].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[3].resources[0].desc.dummy: True
|
||||
$.dataframes[3].resources[0].desc.fake_meta: 1.0
|
||||
|
||||
|
||||
- name: fetch data for multiple tenants
|
||||
@ -167,8 +167,8 @@ tests:
|
||||
$.dataframes[0].resources[0].volume: "1"
|
||||
$.dataframes[0].resources[0].rating: "1.337"
|
||||
$.dataframes[0].resources[0].service: "cpu"
|
||||
$.dataframes[0].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[0].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[0].resources[0].desc.dummy: True
|
||||
$.dataframes[0].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[1].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[1].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[1].end: "2015-01-04T14:00:00"
|
||||
@ -176,8 +176,8 @@ tests:
|
||||
$.dataframes[1].resources[0].volume: "1"
|
||||
$.dataframes[1].resources[0].rating: "1.337"
|
||||
$.dataframes[1].resources[0].service: "cpu"
|
||||
$.dataframes[1].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[1].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[1].resources[0].desc.dummy: True
|
||||
$.dataframes[1].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[2].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[2].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[2].end: "2015-01-04T14:00:00"
|
||||
@ -185,8 +185,8 @@ tests:
|
||||
$.dataframes[2].resources[0].volume: "1"
|
||||
$.dataframes[2].resources[0].rating: "0.121"
|
||||
$.dataframes[2].resources[0].service: "image.size"
|
||||
$.dataframes[2].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[2].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[2].resources[0].desc.dummy: True
|
||||
$.dataframes[2].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[3].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[3].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[3].end: "2015-01-04T14:00:00"
|
||||
@ -194,8 +194,8 @@ tests:
|
||||
$.dataframes[3].resources[0].volume: "1"
|
||||
$.dataframes[3].resources[0].rating: "0.121"
|
||||
$.dataframes[3].resources[0].service: "image.size"
|
||||
$.dataframes[3].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[3].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[3].resources[0].desc.dummy: True
|
||||
$.dataframes[3].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[0].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[0].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[0].end: "2015-01-04T14:00:00"
|
||||
@ -203,8 +203,8 @@ tests:
|
||||
$.dataframes[0].resources[0].volume: "1"
|
||||
$.dataframes[0].resources[0].rating: "1.337"
|
||||
$.dataframes[0].resources[0].service: "cpu"
|
||||
$.dataframes[0].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[0].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[0].resources[0].desc.dummy: True
|
||||
$.dataframes[0].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[1].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[1].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[1].end: "2015-01-04T14:00:00"
|
||||
@ -212,8 +212,8 @@ tests:
|
||||
$.dataframes[1].resources[0].volume: "1"
|
||||
$.dataframes[1].resources[0].rating: "1.337"
|
||||
$.dataframes[1].resources[0].service: "cpu"
|
||||
$.dataframes[1].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[1].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[1].resources[0].desc.dummy: True
|
||||
$.dataframes[1].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[2].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[2].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[2].end: "2015-01-04T14:00:00"
|
||||
@ -221,8 +221,8 @@ tests:
|
||||
$.dataframes[2].resources[0].volume: "1"
|
||||
$.dataframes[2].resources[0].rating: "0.121"
|
||||
$.dataframes[2].resources[0].service: "image.size"
|
||||
$.dataframes[2].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[2].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[2].resources[0].desc.dummy: True
|
||||
$.dataframes[2].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[3].tenant_id: "8f82cc70-e50c-466e-8624-24bdea811375"
|
||||
$.dataframes[3].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[3].end: "2015-01-04T14:00:00"
|
||||
@ -230,8 +230,8 @@ tests:
|
||||
$.dataframes[3].resources[0].volume: "1"
|
||||
$.dataframes[3].resources[0].rating: "0.121"
|
||||
$.dataframes[3].resources[0].service: "image.size"
|
||||
$.dataframes[3].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[3].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[3].resources[0].desc.dummy: True
|
||||
$.dataframes[3].resources[0].desc.fake_meta: 1.0
|
||||
|
||||
- name: fetch data filtering on cpu service and tenant
|
||||
url: /v1/storage/dataframes
|
||||
@ -250,8 +250,8 @@ tests:
|
||||
$.dataframes[0].resources[0].volume: "1"
|
||||
$.dataframes[0].resources[0].rating: "1.337"
|
||||
$.dataframes[0].resources[0].service: "cpu"
|
||||
$.dataframes[0].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[0].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[0].resources[0].desc.dummy: True
|
||||
$.dataframes[0].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[1].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[1].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[1].end: "2015-01-04T14:00:00"
|
||||
@ -259,8 +259,8 @@ tests:
|
||||
$.dataframes[1].resources[0].volume: "1"
|
||||
$.dataframes[1].resources[0].rating: "1.337"
|
||||
$.dataframes[1].resources[0].service: "cpu"
|
||||
$.dataframes[1].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[1].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[1].resources[0].desc.dummy: True
|
||||
$.dataframes[1].resources[0].desc.fake_meta: 1.0
|
||||
|
||||
- name: fetch data filtering on image service and tenant
|
||||
url: /v1/storage/dataframes
|
||||
@ -279,8 +279,8 @@ tests:
|
||||
$.dataframes[0].resources[0].volume: "1"
|
||||
$.dataframes[0].resources[0].rating: "0.121"
|
||||
$.dataframes[0].resources[0].service: "image.size"
|
||||
$.dataframes[0].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[0].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[0].resources[0].desc.dummy: True
|
||||
$.dataframes[0].resources[0].desc.fake_meta: 1.0
|
||||
$.dataframes[1].tenant_id: "7606a24a-b8ad-4ae0-be6c-3d7a41334a2e"
|
||||
$.dataframes[1].begin: "2015-01-04T13:00:00"
|
||||
$.dataframes[1].end: "2015-01-04T14:00:00"
|
||||
@ -288,8 +288,8 @@ tests:
|
||||
$.dataframes[1].resources[0].volume: "1"
|
||||
$.dataframes[1].resources[0].rating: "0.121"
|
||||
$.dataframes[1].resources[0].service: "image.size"
|
||||
$.dataframes[1].resources[0].desc.dummy: 'True'
|
||||
$.dataframes[1].resources[0].desc.fake_meta: '1.0'
|
||||
$.dataframes[1].resources[0].desc.dummy: True
|
||||
$.dataframes[1].resources[0].desc.fake_meta: 1.0
|
||||
|
||||
- name: fetch data filtering on service with no data and tenant
|
||||
url: /v1/storage/dataframes
|
||||
|
@ -21,64 +21,85 @@ import zlib
|
||||
|
||||
from oslo_utils import uuidutils
|
||||
|
||||
from cloudkitty import dataframe
|
||||
from cloudkitty.rating import pyscripts
|
||||
from cloudkitty.rating.pyscripts.db import api
|
||||
from cloudkitty import tests
|
||||
|
||||
from dateutil import parser
|
||||
|
||||
|
||||
FAKE_UUID = '6c1b8a30-797f-4b7e-ad66-9879b79059fb'
|
||||
CK_RESOURCES_DATA = [{
|
||||
CK_RESOURCES_DATA = {
|
||||
"period": {
|
||||
"begin": "2014-10-01T00:00:00",
|
||||
"end": "2014-10-01T01:00:00"},
|
||||
"usage": {
|
||||
"compute": [
|
||||
{
|
||||
"desc": {
|
||||
"availability_zone": "nova",
|
||||
"flavor": "m1.nano",
|
||||
"instance_status": [
|
||||
dataframe.DataPoint(
|
||||
"instance", 1, 0,
|
||||
{"availability_zone": "nova",
|
||||
"flavor": "m1.ultra",
|
||||
"image_id": "f5600101-8fa2-4864-899e-ebcb7ed6b568",
|
||||
"memory": "64",
|
||||
"metadata": {
|
||||
"farm": "prod"},
|
||||
"name": "prod1",
|
||||
"project_id": "f266f30b11f246b589fd266f85eeec39",
|
||||
"user_id": "55b3379b949243009ee96972fbf51ed1",
|
||||
"vcpus": "1"},
|
||||
"vol": {
|
||||
"qty": 1,
|
||||
"unit": "instance"}
|
||||
"vcpus": "1"
|
||||
},
|
||||
{
|
||||
"desc": {
|
||||
"availability_zone": "nova",
|
||||
{"farm": "prod"}),
|
||||
dataframe.DataPoint(
|
||||
"instance", 1, 0,
|
||||
{"availability_zone": "nova",
|
||||
"flavor": "m1.not_so_ultra",
|
||||
"image_id": "f5600101-8fa2-4864-899e-ebcb7ed6b568",
|
||||
"memory": "64",
|
||||
"name": "prod1",
|
||||
"project_id": "f266f30b11f246b589fd266f85eeec39",
|
||||
"user_id": "55b3379b949243009ee96972fbf51ed1",
|
||||
"vcpus": "1"
|
||||
},
|
||||
{"farm": "prod"})],
|
||||
"compute": [
|
||||
dataframe.DataPoint(
|
||||
"instance", 1, 0,
|
||||
{"availability_zone": "nova",
|
||||
"flavor": "m1.nano",
|
||||
"image_id": "f5600101-8fa2-4864-899e-ebcb7ed6b568",
|
||||
"memory": "64",
|
||||
"name": "prod1",
|
||||
"project_id": "f266f30b11f246b589fd266f85eeec39",
|
||||
"user_id": "55b3379b949243009ee96972fbf51ed1",
|
||||
"vcpus": "1"
|
||||
},
|
||||
{"farm": "prod"}),
|
||||
dataframe.DataPoint(
|
||||
"instance", 2, 0,
|
||||
{"availability_zone": "nova",
|
||||
"flavor": "m1.tiny",
|
||||
"image_id": "a41fba37-2429-4f15-aa00-b5bc4bf557bf",
|
||||
"memory": "512",
|
||||
"metadata": {
|
||||
"farm": "dev"},
|
||||
"name": "dev1",
|
||||
"project_id": "f266f30b11f246b589fd266f85eeec39",
|
||||
"user_id": "55b3379b949243009ee96972fbf51ed1",
|
||||
"vcpus": "1"},
|
||||
"vol": {
|
||||
"qty": 2,
|
||||
"unit": "instance"}},
|
||||
{
|
||||
"desc": {
|
||||
"availability_zone": "nova",
|
||||
"vcpus": "1"
|
||||
},
|
||||
{"farm": "dev"}),
|
||||
dataframe.DataPoint(
|
||||
"instance", 1, 0,
|
||||
{"availability_zone": "nova",
|
||||
"flavor": "m1.nano",
|
||||
"image_id": "a41fba37-2429-4f15-aa00-b5bc4bf557bf",
|
||||
"memory": "64",
|
||||
"metadata": {
|
||||
"farm": "dev"},
|
||||
"name": "dev2",
|
||||
"project_id": "f266f30b11f246b589fd266f85eeec39",
|
||||
"user_id": "55b3379b949243009ee96972fbf51ed1",
|
||||
"vcpus": "1"},
|
||||
"vol": {
|
||||
"qty": 1,
|
||||
"unit": "instance"}}]}}]
|
||||
"vcpus": "1"
|
||||
},
|
||||
{"farm": "dev"}),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CODE1 = 'a = 1'.encode('utf-8')
|
||||
TEST_CODE1_CHECKSUM = hashlib.sha512(TEST_CODE1).hexdigest()
|
||||
@ -90,14 +111,89 @@ TEST_CODE3_CHECKSUM = hashlib.sha512(TEST_CODE3).hexdigest()
|
||||
COMPLEX_POLICY1 = """
|
||||
import decimal
|
||||
|
||||
|
||||
for period in data:
|
||||
for service, resources in period['usage'].items():
|
||||
usage_data = data['usage']
|
||||
for service in usage_data.keys():
|
||||
if service == 'compute':
|
||||
for resource in resources:
|
||||
if resource['desc'].get('flavor') == 'm1.nano':
|
||||
all_points = usage_data.get(service, [])
|
||||
for resource in all_points:
|
||||
if resource['groupby'].get('flavor') == 'm1.nano':
|
||||
resource['rating'] = {
|
||||
'price': decimal.Decimal(1.0)}
|
||||
'price': decimal.Decimal(2.0)}
|
||||
if service == 'instance_status':
|
||||
all_points = usage_data.get(service, [])
|
||||
for resource in all_points:
|
||||
if resource['groupby'].get('flavor') == 'm1.ultra':
|
||||
resource['rating'] = {
|
||||
'price': decimal.Decimal(
|
||||
resource['groupby'].get(
|
||||
'memory')) * decimal.Decimal(1.5)}
|
||||
""".encode('utf-8')
|
||||
|
||||
|
||||
DOCUMENTATION_RATING_POLICY = """
|
||||
import decimal
|
||||
|
||||
|
||||
# Price for each flavor. These are equivalent to hashmap field mappings.
|
||||
flavors = {
|
||||
'm1.micro': decimal.Decimal(0.65),
|
||||
'm1.nano': decimal.Decimal(0.35),
|
||||
'm1.large': decimal.Decimal(2.67)
|
||||
}
|
||||
|
||||
# Price per MB / GB for images and volumes. These are equivalent to
|
||||
# hashmap service mappings.
|
||||
image_mb_price = decimal.Decimal(0.002)
|
||||
volume_gb_price = decimal.Decimal(0.35)
|
||||
|
||||
# These functions return the price of a service usage on a collect period.
|
||||
# The price is always equivalent to the price per unit multiplied by
|
||||
# the quantity.
|
||||
def get_compute_price(item):
|
||||
flavor_name = item['groupby']['flavor']
|
||||
if not flavor_name in flavors:
|
||||
return 0
|
||||
else:
|
||||
return (decimal.Decimal(item['vol']['qty']) * flavors[flavor_name])
|
||||
|
||||
def get_image_price(item):
|
||||
if not item['vol']['qty']:
|
||||
return 0
|
||||
else:
|
||||
return decimal.Decimal(item['vol']['qty']) * image_mb_price
|
||||
|
||||
|
||||
def get_volume_price(item):
|
||||
if not item['vol']['qty']:
|
||||
return 0
|
||||
else:
|
||||
return decimal.Decimal(item['vol']['qty']) * volume_gb_price
|
||||
|
||||
# Mapping each service to its price calculation function
|
||||
services = {
|
||||
'compute': get_compute_price,
|
||||
'volume': get_volume_price,
|
||||
'image': get_image_price
|
||||
}
|
||||
|
||||
def process(data):
|
||||
# The 'data' is a dictionary with the usage entries for each service for
|
||||
# each given period.
|
||||
usage_data = data['usage']
|
||||
|
||||
for service_name, service_data in usage_data.items():
|
||||
# Do not calculate the price if the service has no
|
||||
# price calculation function
|
||||
if service_name in services.keys():
|
||||
# A service can have several items. For example,
|
||||
# each running instance is an item of the compute service
|
||||
for item in service_data:
|
||||
item['rating'] = {'price': services[service_name](item)}
|
||||
return data
|
||||
|
||||
# 'data' is passed as a global variable. The script is supposed to set the
|
||||
# 'rating' element of each item in each service
|
||||
data = process(data)
|
||||
""".encode('utf-8')
|
||||
|
||||
|
||||
@ -109,6 +205,11 @@ class PyScriptsRatingTest(tests.TestCase):
|
||||
self._db_api.get_migration().upgrade('head')
|
||||
self._pyscripts = pyscripts.PyScripts(self._tenant_id)
|
||||
|
||||
self.dataframe_for_tests = dataframe.DataFrame(
|
||||
parser.parse(CK_RESOURCES_DATA['period']['begin']),
|
||||
parser.parse(CK_RESOURCES_DATA['period']['end']),
|
||||
CK_RESOURCES_DATA['usage'])
|
||||
|
||||
# Scripts tests
|
||||
@mock.patch.object(uuidutils, 'generate_uuid',
|
||||
return_value=FAKE_UUID)
|
||||
@ -295,16 +396,87 @@ class PyScriptsRatingTest(tests.TestCase):
|
||||
self._db_api.create_script('policy1', TEST_CODE1)
|
||||
self._db_api.create_script('policy2', TEST_CODE3)
|
||||
self._pyscripts.reload_config()
|
||||
self.assertRaises(NameError, self._pyscripts.process, {})
|
||||
|
||||
self.assertEqual(2, len(self._pyscripts._scripts))
|
||||
self.assertRaises(NameError, self._pyscripts.process,
|
||||
self.dataframe_for_tests)
|
||||
|
||||
# Processing
|
||||
def test_process_rating(self):
|
||||
self._db_api.create_script('policy1', COMPLEX_POLICY1)
|
||||
self._pyscripts.reload_config()
|
||||
actual_data = copy.deepcopy(CK_RESOURCES_DATA)
|
||||
expected_data = copy.deepcopy(CK_RESOURCES_DATA)
|
||||
compute_list = expected_data[0]['usage']['compute']
|
||||
compute_list[0]['rating'] = {'price': decimal.Decimal('1')}
|
||||
compute_list[2]['rating'] = {'price': decimal.Decimal('1')}
|
||||
self._pyscripts.process(actual_data)
|
||||
self.assertEqual(expected_data, actual_data)
|
||||
|
||||
data_output = self._pyscripts.process(self.dataframe_for_tests)
|
||||
self.assertIsInstance(data_output, dataframe.DataFrame)
|
||||
|
||||
dict_output = data_output.as_dict()
|
||||
for point in dict_output['usage']['compute']:
|
||||
if point['groupby'].get('flavor') == 'm1.nano':
|
||||
self.assertEqual(
|
||||
decimal.Decimal('2'), point['rating']['price'])
|
||||
else:
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0'), point['rating']['price'])
|
||||
for point in dict_output['usage']['instance_status']:
|
||||
if point['groupby'].get('flavor') == 'm1.ultra':
|
||||
self.assertEqual(
|
||||
decimal.Decimal('96'), point['rating']['price'])
|
||||
else:
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0'), point['rating']['price'])
|
||||
|
||||
# Processing
|
||||
def test_process_rating_with_documentation_rules(self):
|
||||
self._db_api.create_script('policy1', DOCUMENTATION_RATING_POLICY)
|
||||
self._pyscripts.reload_config()
|
||||
|
||||
dataframe_for_tests = copy.deepcopy(self.dataframe_for_tests)
|
||||
dataframe_for_tests.add_point(
|
||||
dataframe.DataPoint("GB", 5, 0, {"tag": "A"}, {}), "image")
|
||||
dataframe_for_tests.add_point(
|
||||
dataframe.DataPoint("GB", 15, 0, {"tag": "B"}, {}), "image")
|
||||
|
||||
dataframe_for_tests.add_point(
|
||||
dataframe.DataPoint("GB", 500, 0, {"tag": "D"}, {}), "volume")
|
||||
dataframe_for_tests.add_point(
|
||||
dataframe.DataPoint("GB", 80, 0, {"tag": "E"}, {}), "volume")
|
||||
|
||||
data_output = self._pyscripts.process(dataframe_for_tests)
|
||||
self.assertIsInstance(data_output, dataframe.DataFrame)
|
||||
|
||||
dict_output = data_output.as_dict()
|
||||
for point in dict_output['usage']['compute']:
|
||||
if point['groupby'].get('flavor') == 'm1.nano':
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0.3499999999999999777955395075'),
|
||||
point['rating']['price'])
|
||||
else:
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0'), point['rating']['price'])
|
||||
for point in dict_output['usage']['instance_status']:
|
||||
if point['groupby'].get('flavor') == 'm1.ultra':
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0'), point['rating']['price'])
|
||||
else:
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0'), point['rating']['price'])
|
||||
|
||||
for point in dict_output['usage']['image']:
|
||||
if point['groupby'].get('tag') == 'A':
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0.01000000000000000020816681712'),
|
||||
point['rating']['price'])
|
||||
else:
|
||||
self.assertEqual(
|
||||
decimal.Decimal('0.03000000000000000062450045135'),
|
||||
point['rating']['price'])
|
||||
|
||||
for point in dict_output['usage']['volume']:
|
||||
if point['groupby'].get('tag') == 'D':
|
||||
self.assertEqual(
|
||||
decimal.Decimal('174.9999999999999888977697537'),
|
||||
point['rating']['price'])
|
||||
else:
|
||||
self.assertEqual(
|
||||
decimal.Decimal('27.99999999999999822364316060'),
|
||||
point['rating']['price'])
|
||||
|
@ -74,11 +74,11 @@ Processing the data
|
||||
.. code-block:: python
|
||||
|
||||
def process(data):
|
||||
# The 'data' parameter is a list of dictionaries containing a
|
||||
# "usage" and a "period" field
|
||||
for d in data:
|
||||
usage = d['usage']
|
||||
for service_name, service_data in usage.items():
|
||||
# The 'data' is a dictionary with the usage entries for each service
|
||||
# in a given period.
|
||||
usage_data = data['usage']
|
||||
|
||||
for service_name, service_data in usage_data.items():
|
||||
# Do not calculate the price if the service has no
|
||||
# price calculation function
|
||||
if service_name in services.keys():
|
||||
|
4
releasenotes/notes/fix_py_scripts-fd9ab52c92263844.yaml
Normal file
4
releasenotes/notes/fix_py_scripts-fd9ab52c92263844.yaml
Normal file
@ -0,0 +1,4 @@
|
||||
---
|
||||
fixes:
|
||||
- |
|
||||
Fix failure to process rating using the PyScripts rating module.
|
Loading…
Reference in New Issue
Block a user