cloudkitty/cloudkitty/dataframe.py
Luka Peschke 0dbf9a64b7 Introduce cloudkitty.utils
This introduces a new cloudkitty.utils module. Work items:

* cloudkitty/utils.py has been moved to cloudkitty/utils/__init__.py . The
  import path does not change.

* cloudkitty.json_utils has been moved to cloudkitty.utils.json

* cloudkitty.validation_utils has been moved to cloudkitty.utils.validation

* cloudkitty.tzutils has been moved to cloudkitty.utils.tz

* Unit test layout has been adapted to the new utils layout

Story: 2006941
Task: 37614
Change-Id: I2ba1577eb64e27c1e837ba9e20dec532b46fca8a
2019-11-25 16:55:02 +01:00

280 lines
9.5 KiB
Python

# Copyright 2019 Objectif Libre
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
import collections
import datetime
import decimal
import functools
import voluptuous
from werkzeug import datastructures
from cloudkitty.utils import json
from cloudkitty.utils import tz as tzutils
from cloudkitty.utils import validation as vutils
# NOTE(peschk_l): qty and price are converted to strings to avoid
# floating-point conversion issues:
# Decimal(0.121) == Decimal('0.12099999999999999644728632119')
# Decimal(str(0.121)) == Decimal('0.121')
DATAPOINT_SCHEMA = voluptuous.Schema({
voluptuous.Required('vol'): {
voluptuous.Required('unit'): vutils.get_string_type(),
voluptuous.Required('qty'): voluptuous.Coerce(str),
},
voluptuous.Required('rating', default={}): {
voluptuous.Required('price', default=0):
voluptuous.Coerce(str),
},
voluptuous.Required('groupby'): vutils.DictTypeValidator(str, str),
voluptuous.Required('metadata'): vutils.DictTypeValidator(str, str),
})
_DataPointBase = collections.namedtuple(
"DataPoint",
field_names=("unit", "qty", "price", "groupby", "metadata"))
class DataPoint(_DataPointBase):
def __new__(cls, unit, qty, price, groupby, metadata):
return _DataPointBase.__new__(
cls,
unit or "undefined",
# NOTE(peschk_l): avoids floating-point issues.
decimal.Decimal(str(qty) if isinstance(qty, float) else qty),
decimal.Decimal(str(price) if isinstance(price, float) else price),
datastructures.ImmutableDict(groupby),
datastructures.ImmutableDict(metadata),
)
def set_price(self, price):
"""Sets the price of the DataPoint and returns a new object."""
return self._replace(price=price)
def as_dict(self, legacy=False, mutable=False):
"""Returns a dict representation of the object.
The returned dict is immutable by default and has the
following format::
{
"vol": {
"unit": "GiB",
"qty": 1.2,
},
"rating": {
"price": 0.04,
},
"groupby": {
"group_one": "one",
"group_two": "two",
},
"metadata": {
"attr_one": "one",
"attr_two": "two",
},
}
The dict can also be returned in the legacy (v1 storage) format. In
that case, `groupby` and `metadata` will be removed and merged together
into the `desc` key.
:param legacy: Defaults to False. If True, returned dict is in legacy
format.
:type legacy: bool
:param mutable: Defaults to False. If True, returns a normal dict
instead of an ImmutableDict.
:type mutable: bool
"""
output = {
"vol": {
"unit": self.unit,
"qty": self.qty,
},
"rating": {
"price": self.price,
},
"groupby": dict(self.groupby) if mutable else self.groupby,
"metadata": dict(self.metadata) if mutable else self.metadata,
}
if legacy:
desc = output.pop("metadata")
desc.update(output.pop("groupby"))
output['desc'] = desc
return output if mutable else datastructures.ImmutableDict(output)
def json(self, legacy=False):
"""Returns a json representation of the dict returned by `as_dict`.
:param legacy: Defaults to False. If True, returned dict is in legacy
format.
:type legacy: bool
:rtype: str
"""
return json.dumps(self.as_dict(legacy=legacy, mutable=True))
@classmethod
def from_dict(cls, dict_, legacy=False):
"""Returns a new DataPoint instance build from a dict.
:param dict_: Dict to build the DataPoint from
:type dict_: dict
:param legacy: Set to true to convert the dict to a the new format
before validating it.
:rtype: DataPoint
"""
try:
if legacy:
dict_['groupby'] = dict_.pop('desc')
dict_['metadata'] = {}
valid = DATAPOINT_SCHEMA(dict_)
return cls(
unit=valid["vol"]["unit"],
qty=valid["vol"]["qty"],
price=valid["rating"]["price"],
groupby=valid["groupby"],
metadata=valid["metadata"],
)
except (voluptuous.Invalid, KeyError) as e:
raise ValueError("{} isn't a valid DataPoint: {}".format(dict_, e))
@property
def desc(self):
output = dict(self.metadata)
output.update(self.groupby)
return datastructures.ImmutableDict(output)
DATAFRAME_SCHEMA = voluptuous.Schema({
voluptuous.Required('period'): {
voluptuous.Required('begin'): voluptuous.Any(
datetime.datetime, voluptuous.Coerce(tzutils.dt_from_iso)),
voluptuous.Required('end'): voluptuous.Any(
datetime.datetime, voluptuous.Coerce(tzutils.dt_from_iso)),
},
voluptuous.Required('usage'): vutils.IterableValuesDict(
str, DataPoint.from_dict),
})
class DataFrame(object):
__slots__ = ("start", "end", "_usage")
def __init__(self, start, end, usage=None):
if not isinstance(start, datetime.datetime):
raise TypeError(
'"start" must be of type datetime.datetime, not {}'.format(
type(start)))
if not isinstance(end, datetime.datetime):
raise TypeError(
'"end" must be of type datetime.datetime, not {}'.format(
type(end)))
if usage is not None and not isinstance(usage, dict):
raise TypeError(
'"usage" must be a dict, not {}'.format(type(usage)))
self.start = start
self.end = end
self._usage = collections.OrderedDict()
if usage:
for key in sorted(usage.keys()):
self.add_points(usage[key], key)
def as_dict(self, legacy=False, mutable=False):
output = {
"period": {"begin": self.start, "end": self.end},
"usage": {
key: [v.as_dict(legacy=legacy, mutable=mutable) for v in val]
for key, val in self._usage.items()
},
}
return output if mutable else datastructures.ImmutableDict(output)
def json(self, legacy=False):
return json.dumps(self.as_dict(legacy=legacy, mutable=True))
@classmethod
def from_dict(cls, dict_, legacy=False):
try:
schema = DATAFRAME_SCHEMA
if legacy:
validator = functools.partial(DataPoint.from_dict, legacy=True)
# NOTE(peschk_l): __name__ is required for voluptuous exception
# message formatting
validator.__name__ = 'DataPoint.from_dict'
# NOTE(peschk_l): In case the legacy format is required, we
# create a new schema where DataPoint.from_dict is called with
# legacy=True. The "extend" method does create a new objects,
# and replaces existing keys with new ones.
schema = DATAFRAME_SCHEMA.extend({
voluptuous.Required('usage'): vutils.IterableValuesDict(
str, validator
),
})
valid = schema(dict_)
return cls(
valid["period"]["begin"],
valid["period"]["end"],
usage=valid["usage"])
except (voluptuous.error.Invalid, KeyError) as e:
raise ValueError("{} isn't a valid DataFrame: {}".format(dict_, e))
def add_points(self, points, type_):
"""Adds multiple points to the DataFrame
:param points: DataPoints to add.
:type point: list of DataPoints
"""
if type_ in self._usage:
self._usage[type_] += points
else:
self._usage[type_] = points
def add_point(self, point, type_):
"""Adds a single point to the DataFrame
:param point: DataPoint to add.
:type point: DataPoint
"""
if type_ in self._usage:
self._usage[type_].append(point)
else:
self._usage[type_] = [point]
def iterpoints(self):
"""Iterates over all datapoints of the dataframe.
Yields (type, point) tuples.
:rtype: (str, DataPoint)
"""
for type_, points in self._usage.items():
for point in points:
yield type_, point
def itertypes(self):
"""Iterates over all types of the dataframe.
Yields (type, (point, )) tuples.
:rtype: (str, (DataPoint, ))
"""
for type_, points in self._usage.items():
yield type_, points
def __repr__(self):
return 'DataFrame(metrics=[{}])'.format(','.join(self._usage.keys()))