Files
cloudkitty/cloudkitty/storage/v2/opensearch/client.py
Matt Crees 1cac1765b9 Add OpenSearch as a v2 storage backend
To facilitate the switch from Elasticsearch to OpenSearch, the ES
backend has been duplicated and renamed where appropriate to OpenSearch.

The OpenSearch implementation was modified in places for compatibility
with OpenSearch 2.x, for example:

- remove mapping name from bulk API URL
- replace put_mapping by post_mapping

This will allow for the future removal of the Elasticsearch backend.

Change-Id: I88b0a30f66af13dad1bd75cde412d2880b4ead30
Co-Authored-By: Pierre Riteau <pierre@stackhpc.com>
(cherry picked from commit 964c6704a2)
2023-12-15 08:49:25 +00:00

413 lines
14 KiB
Python

# Copyright 2019 Objectif Libre
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
import itertools
from oslo_log import log
import requests
from cloudkitty.storage.v2.opensearch import exceptions
from cloudkitty.utils import json
LOG = log.getLogger(__name__)
class OpenSearchClient(object):
"""Class used to ease interaction with OpenSearch.
:param autocommit: Defaults to True. Automatically push documents to
OpenSearch once chunk_size has been reached.
:type autocommit: bool
:param chunk_size: Maximal number of documents to commit/retrieve at once.
:type chunk_size: int
:param scroll_duration: Defaults to 60. Duration, in seconds, for which
search contexts should be kept alive
:type scroll_duration: int
"""
def __init__(self, url, index_name, mapping_name,
verify=True,
autocommit=True,
chunk_size=5000,
scroll_duration=60):
self._url = url.strip('/')
self._index_name = index_name.strip('/')
self._mapping_name = mapping_name.strip('/')
self._autocommit = autocommit
self._chunk_size = chunk_size
self._scroll_duration = str(scroll_duration) + 's'
self._scroll_params = {'scroll': self._scroll_duration}
self._docs = []
self._scroll_ids = set()
self._sess = requests.Session()
self._verify = self._sess.verify = verify
self._sess.headers = {'Content-Type': 'application/json'}
@staticmethod
def _log_query(url, query, response):
message = 'Query on {} with body "{}" took {}ms'.format(
url, query, response['took'])
if 'hits' in response.keys():
message += ' for {} hits'.format(response['hits']['total'])
LOG.debug(message)
@staticmethod
def _build_must(start, end, metric_types, filters):
must = []
if start:
must.append({"range": {"start": {"gte": start.isoformat()}}})
if end:
must.append({"range": {"end": {"lte": end.isoformat()}}})
if filters and 'type' in filters.keys():
must.append({'term': {'type': filters['type']}})
if metric_types:
must.append({"terms": {"type": metric_types}})
return must
@staticmethod
def _build_should(filters):
if not filters:
return []
should = []
for k, v in filters.items():
if k != 'type':
should += [{'term': {'groupby.' + k: v}},
{'term': {'metadata.' + k: v}}]
return should
def _build_composite(self, groupby):
if not groupby:
return []
sources = []
for elem in groupby:
if elem == 'type':
sources.append({'type': {'terms': {'field': 'type'}}})
elif elem == 'time':
# Not doing a date_histogram aggregation because we don't know
# the period
sources.append({'begin': {'terms': {'field': 'start'}}})
sources.append({'end': {'terms': {'field': 'end'}}})
else:
sources.append({elem: {'terms': {'field': 'groupby.' + elem}}})
return {"sources": sources}
@staticmethod
def _build_query(must, should, composite):
query = {}
if must or should:
query["query"] = {"bool": {}}
if must:
query["query"]["bool"]["must"] = must
if should:
query["query"]["bool"]["should"] = should
# We want each term to match exactly once, and each term introduces
# two "term" aggregations: one for "groupby" and one for "metadata"
query["query"]["bool"]["minimum_should_match"] = len(should) // 2
if composite:
query["aggs"] = {"sum_and_price": {
"composite": composite,
"aggregations": {
"sum_price": {"sum": {"field": "price"}},
"sum_qty": {"sum": {"field": "qty"}},
}
}}
return query
def _req(self, method, url, data, params, deserialize=True):
r = method(url, data=data, params=params)
if r.status_code < 200 or r.status_code >= 300:
raise exceptions.InvalidStatusCode(
200, r.status_code, r.text, data)
if not deserialize:
return r
output = r.json()
self._log_query(url, data, output)
return output
def post_mapping(self, mapping):
"""Does a POST request against OpenSearch's mapping API.
The POST request will be done against
`/<index_name>/<mapping_name>`
:mapping: body of the request
:type mapping: dict
:rtype: requests.models.Response
"""
url = '/'.join(
(self._url, self._index_name, self._mapping_name))
return self._req(
self._sess.post, url, json.dumps(mapping), {}, deserialize=False)
def get_index(self):
"""Does a GET request against OpenSearch's index API.
The GET request will be done against `/<index_name>`
:rtype: requests.models.Response
"""
url = '/'.join((self._url, self._index_name))
return self._req(self._sess.get, url, None, None, deserialize=False)
def search(self, body, scroll=True):
"""Does a GET request against OpenSearch's search API.
The GET request will be done against `/<index_name>/_search`
:param body: body of the request
:type body: dict
:rtype: dict
"""
url = '/'.join((self._url, self._index_name, '_search'))
params = self._scroll_params if scroll else None
return self._req(
self._sess.get, url, json.dumps(body), params)
def scroll(self, body):
"""Does a GET request against OpenSearch's scroll API.
The GET request will be done against `/_search/scroll`
:param body: body of the request
:type body: dict
:rtype: dict
"""
url = '/'.join((self._url, '_search/scroll'))
return self._req(self._sess.get, url, json.dumps(body), None)
def close_scroll(self, body):
"""Does a DELETE request against OpenSearch's scroll API.
The DELETE request will be done against `/_search/scroll`
:param body: body of the request
:type body: dict
:rtype: dict
"""
url = '/'.join((self._url, '_search/scroll'))
resp = self._req(
self._sess.delete, url, json.dumps(body), None, deserialize=False)
body = resp.json()
LOG.debug('Freed {} scrolls contexts'.format(body['num_freed']))
return body
def close_scrolls(self):
"""Closes all scroll contexts opened by this client."""
ids = list(self._scroll_ids)
LOG.debug('Closing {} scroll contexts: {}'.format(len(ids), ids))
self.close_scroll({'scroll_id': ids})
self._scroll_ids = set()
def bulk_with_instruction(self, instruction, terms):
"""Does a POST request against OpenSearch's bulk API
The POST request will be done against
`/<index_name>/_bulk`
The instruction will be appended before each term. For example,
bulk_with_instruction('instr', ['one', 'two']) will produce::
instr
one
instr
two
:param instruction: instruction to execute for each term
:type instruction: dict
:param terms: list of terms for which instruction should be executed
:type terms: collections.abc.Iterable
:rtype: requests.models.Response
"""
instruction = json.dumps(instruction)
data = '\n'.join(itertools.chain(
*[(instruction, json.dumps(term)) for term in terms]
)) + '\n'
url = '/'.join(
(self._url, self._index_name, '_bulk'))
return self._req(self._sess.post, url, data, None, deserialize=False)
def bulk_index(self, terms):
"""Indexes each of the documents in 'terms'
:param terms: list of documents to index
:type terms: collections.abc.Iterable
"""
LOG.debug("Indexing {} documents".format(len(terms)))
return self.bulk_with_instruction({"index": {}}, terms)
def commit(self):
"""Index all documents"""
while self._docs:
self.bulk_index(self._docs[:self._chunk_size])
self._docs = self._docs[self._chunk_size:]
def add_point(self, point, type_, start, end):
"""Append a point to the client.
:param point: DataPoint to append
:type point: cloudkitty.dataframe.DataPoint
:param type_: type of the DataPoint
:type type_: str
"""
self._docs.append({
'start': start,
'end': end,
'type': type_,
'unit': point.unit,
'qty': point.qty,
'price': point.price,
'groupby': point.groupby,
'metadata': point.metadata,
})
if self._autocommit and len(self._docs) >= self._chunk_size:
self.commit()
def _get_chunk_size(self, offset, limit, paginate):
if paginate and offset + limit < self._chunk_size:
return offset + limit
return self._chunk_size
def retrieve(self, begin, end, filters, metric_types,
offset=0, limit=1000, paginate=True):
"""Retrieves a paginated list of documents from OpenSearch."""
if not paginate:
offset = 0
query = self._build_query(
self._build_must(begin, end, metric_types, filters),
self._build_should(filters), None)
query['size'] = self._get_chunk_size(offset, limit, paginate)
resp = self.search(query)
scroll_id = resp['_scroll_id']
self._scroll_ids.add(scroll_id)
total_hits = resp['hits']['total']
if isinstance(total_hits, dict):
LOG.debug("Total hits [%s] is a dict. Therefore, we only extract "
"the 'value' attribute as the total option.", total_hits)
total_hits = total_hits.get("value")
total = total_hits
chunk = resp['hits']['hits']
output = chunk[offset:offset+limit if paginate else len(chunk)]
offset = 0 if len(chunk) > offset else offset - len(chunk)
while (not paginate) or len(output) < limit:
resp = self.scroll({
'scroll_id': scroll_id,
'scroll': self._scroll_duration,
})
scroll_id, chunk = resp['_scroll_id'], resp['hits']['hits']
self._scroll_ids.add(scroll_id)
# Means we've scrolled until the end
if not chunk:
break
output += chunk[offset:offset+limit if paginate else len(chunk)]
offset = 0 if len(chunk) > offset else offset - len(chunk)
self.close_scrolls()
return total, output
def delete_by_query(self, begin=None, end=None, filters=None):
"""Does a POST request against ES's Delete By Query API.
The POST request will be done against
`/<index_name>/_delete_by_query`
:param filters: Optional filters for documents to delete
:type filters: list of dicts
:rtype: requests.models.Response
"""
url = '/'.join((self._url, self._index_name, '_delete_by_query'))
must = self._build_must(begin, end, None, filters)
data = (json.dumps({"query": {"bool": {"must": must}}})
if must else None)
return self._req(self._sess.post, url, data, None)
def total(self, begin, end, metric_types, filters, groupby,
custom_fields=None, offset=0, limit=1000, paginate=True):
if custom_fields:
LOG.warning("'custom_fields' are not implemented yet for "
"OpenSearch. Therefore, the custom fields [%s] "
"informed by the user will be ignored.", custom_fields)
if not paginate:
offset = 0
must = self._build_must(begin, end, metric_types, filters)
should = self._build_should(filters)
composite = self._build_composite(groupby) if groupby else None
if composite:
composite['size'] = self._chunk_size
query = self._build_query(must, should, composite)
if "aggs" not in query.keys():
query["aggs"] = {
"sum_price": {"sum": {"field": "price"}},
"sum_qty": {"sum": {"field": "qty"}},
}
query['size'] = 0
resp = self.search(query, scroll=False)
# Means we didn't group, so length is 1
if not composite:
return 1, [resp["aggregations"]]
after = resp["aggregations"]["sum_and_price"].get("after_key")
chunk = resp["aggregations"]["sum_and_price"]["buckets"]
total = len(chunk)
output = chunk[offset:offset+limit if paginate else len(chunk)]
offset = 0 if len(chunk) > offset else offset - len(chunk)
# FIXME(peschk_l): We have to iterate over ALL buckets in order to get
# the total length. If there is a way for composite aggregations to get
# the total amount of buckets, please fix this
while after:
composite_query = query["aggs"]["sum_and_price"]["composite"]
composite_query["size"] = self._chunk_size
composite_query["after"] = after
resp = self.search(query, scroll=False)
after = resp["aggregations"]["sum_and_price"].get("after_key")
chunk = resp["aggregations"]["sum_and_price"]["buckets"]
if not chunk:
break
output += chunk[offset:offset+limit if paginate else len(chunk)]
offset = 0 if len(chunk) > offset else offset - len(chunk)
total += len(chunk)
if paginate:
output = output[offset:offset+limit]
return total, output