deb-alembic/alembic/operations.py
Mike Bayer 10ad109bb6 - move pretty much all of sqlalchemy.testing over for now, as we'd
like to run tests against 0.8 and even late 0.7 versions with the same
capabilities, as well as run parallel testing against all of them.
we need a consistent system to get that all to work, so for now
we have the whole SQLA system shoved into here, not ideal but we have
a very good testing situation for now.  Once we target 0.9.4 at the lowest
we should be able to move all this out.
- re-support 0.7, starting at 0.7.6 which is where things mostly work.
All tests, taking into account known skips and fails which are
added here for 0.7, early 0.8s, pass on 0.7.9.
2014-09-14 11:37:50 -04:00

1077 lines
42 KiB
Python

from contextlib import contextmanager
from sqlalchemy.types import NULLTYPE, Integer
from sqlalchemy import schema as sa_schema
from . import util
from .compat import string_types
from .ddl import impl
__all__ = ('Operations',)
try:
from sqlalchemy.sql.naming import conv
except:
conv = None
class Operations(object):
"""Define high level migration operations.
Each operation corresponds to some schema migration operation,
executed against a particular :class:`.MigrationContext`
which in turn represents connectivity to a database,
or a file output stream.
While :class:`.Operations` is normally configured as
part of the :meth:`.EnvironmentContext.run_migrations`
method called from an ``env.py`` script, a standalone
:class:`.Operations` instance can be
made for use cases external to regular Alembic
migrations by passing in a :class:`.MigrationContext`::
from alembic.migration import MigrationContext
from alembic.operations import Operations
conn = myengine.connect()
ctx = MigrationContext.configure(conn)
op = Operations(ctx)
op.alter_column("t", "c", nullable=True)
"""
def __init__(self, migration_context):
"""Construct a new :class:`.Operations`
:param migration_context: a :class:`.MigrationContext`
instance.
"""
self.migration_context = migration_context
self.impl = migration_context.impl
@classmethod
@contextmanager
def context(cls, migration_context):
from .op import _install_proxy, _remove_proxy
op = Operations(migration_context)
_install_proxy(op)
yield op
_remove_proxy()
def _primary_key_constraint(self, name, table_name, cols, schema=None):
m = self._metadata()
columns = [sa_schema.Column(n, NULLTYPE) for n in cols]
t1 = sa_schema.Table(table_name, m,
*columns,
schema=schema)
p = sa_schema.PrimaryKeyConstraint(*columns, name=name)
t1.append_constraint(p)
return p
def _foreign_key_constraint(self, name, source, referent,
local_cols, remote_cols,
onupdate=None, ondelete=None,
deferrable=None, source_schema=None,
referent_schema=None, initially=None,
match=None, **dialect_kw):
m = self._metadata()
if source == referent:
t1_cols = local_cols + remote_cols
else:
t1_cols = local_cols
sa_schema.Table(
referent, m,
*[sa_schema.Column(n, NULLTYPE) for n in remote_cols],
schema=referent_schema)
t1 = sa_schema.Table(
source, m,
*[sa_schema.Column(n, NULLTYPE) for n in t1_cols],
schema=source_schema)
tname = "%s.%s" % (referent_schema, referent) if referent_schema \
else referent
if util.sqla_08:
# "match" kw unsupported in 0.7
dialect_kw['match'] = match
f = sa_schema.ForeignKeyConstraint(local_cols,
["%s.%s" % (tname, n)
for n in remote_cols],
name=name,
onupdate=onupdate,
ondelete=ondelete,
deferrable=deferrable,
initially=initially,
**dialect_kw
)
t1.append_constraint(f)
return f
def _unique_constraint(self, name, source, local_cols, schema=None, **kw):
t = sa_schema.Table(
source, self._metadata(),
*[sa_schema.Column(n, NULLTYPE) for n in local_cols],
schema=schema)
kw['name'] = name
uq = sa_schema.UniqueConstraint(*[t.c[n] for n in local_cols], **kw)
# TODO: need event tests to ensure the event
# is fired off here
t.append_constraint(uq)
return uq
def _check_constraint(self, name, source, condition, schema=None, **kw):
t = sa_schema.Table(source, self._metadata(),
sa_schema.Column('x', Integer), schema=schema)
ck = sa_schema.CheckConstraint(condition, name=name, **kw)
t.append_constraint(ck)
return ck
def _metadata(self):
kw = {}
if 'target_metadata' in self.migration_context.opts:
mt = self.migration_context.opts['target_metadata']
if hasattr(mt, 'naming_convention'):
kw['naming_convention'] = mt.naming_convention
return sa_schema.MetaData(**kw)
def _table(self, name, *columns, **kw):
m = self._metadata()
t = sa_schema.Table(name, m, *columns, **kw)
for f in t.foreign_keys:
self._ensure_table_for_fk(m, f)
return t
def _column(self, name, type_, **kw):
return sa_schema.Column(name, type_, **kw)
def _index(self, name, tablename, columns, schema=None, **kw):
t = sa_schema.Table(
tablename or 'no_table', self._metadata(),
schema=schema
)
idx = sa_schema.Index(
name,
*[impl._textual_index_column(t, n) for n in columns],
**kw)
return idx
def _parse_table_key(self, table_key):
if '.' in table_key:
tokens = table_key.split('.')
sname = ".".join(tokens[0:-1])
tname = tokens[-1]
else:
tname = table_key
sname = None
return (sname, tname)
def _ensure_table_for_fk(self, metadata, fk):
"""create a placeholder Table object for the referent of a
ForeignKey.
"""
if isinstance(fk._colspec, string_types):
table_key, cname = fk._colspec.rsplit('.', 1)
sname, tname = self._parse_table_key(table_key)
if table_key not in metadata.tables:
rel_t = sa_schema.Table(tname, metadata, schema=sname)
else:
rel_t = metadata.tables[table_key]
if cname not in rel_t.c:
rel_t.append_column(sa_schema.Column(cname, NULLTYPE))
def get_context(self):
"""Return the :class:`.MigrationContext` object that's
currently in use.
"""
return self.migration_context
def rename_table(self, old_table_name, new_table_name, schema=None):
"""Emit an ALTER TABLE to rename a table.
:param old_table_name: old name.
:param new_table_name: new name.
:param schema: Optional schema name to operate within.
"""
self.impl.rename_table(
old_table_name,
new_table_name,
schema=schema
)
@util._with_legacy_names([('name', 'new_column_name')])
def alter_column(self, table_name, column_name,
nullable=None,
server_default=False,
new_column_name=None,
type_=None,
autoincrement=None,
existing_type=None,
existing_server_default=False,
existing_nullable=None,
existing_autoincrement=None,
schema=None
):
"""Issue an "alter column" instruction using the
current migration context.
Generally, only that aspect of the column which
is being changed, i.e. name, type, nullability,
default, needs to be specified. Multiple changes
can also be specified at once and the backend should
"do the right thing", emitting each change either
separately or together as the backend allows.
MySQL has special requirements here, since MySQL
cannot ALTER a column without a full specification.
When producing MySQL-compatible migration files,
it is recommended that the ``existing_type``,
``existing_server_default``, and ``existing_nullable``
parameters be present, if not being altered.
Type changes which are against the SQLAlchemy
"schema" types :class:`~sqlalchemy.types.Boolean`
and :class:`~sqlalchemy.types.Enum` may also
add or drop constraints which accompany those
types on backends that don't support them natively.
The ``existing_server_default`` argument is
used in this case as well to remove a previous
constraint.
:param table_name: string name of the target table.
:param column_name: string name of the target column,
as it exists before the operation begins.
:param nullable: Optional; specify ``True`` or ``False``
to alter the column's nullability.
:param server_default: Optional; specify a string
SQL expression, :func:`~sqlalchemy.sql.expression.text`,
or :class:`~sqlalchemy.schema.DefaultClause` to indicate
an alteration to the column's default value.
Set to ``None`` to have the default removed.
:param new_column_name: Optional; specify a string name here to
indicate the new name within a column rename operation.
.. versionchanged:: 0.5.0
The ``name`` parameter is now named ``new_column_name``.
The old name will continue to function for backwards
compatibility.
:param ``type_``: Optional; a :class:`~sqlalchemy.types.TypeEngine`
type object to specify a change to the column's type.
For SQLAlchemy types that also indicate a constraint (i.e.
:class:`~sqlalchemy.types.Boolean`, :class:`~sqlalchemy.types.Enum`),
the constraint is also generated.
:param autoincrement: set the ``AUTO_INCREMENT`` flag of the column;
currently understood by the MySQL dialect.
:param existing_type: Optional; a
:class:`~sqlalchemy.types.TypeEngine`
type object to specify the previous type. This
is required for all MySQL column alter operations that
don't otherwise specify a new type, as well as for
when nullability is being changed on a SQL Server
column. It is also used if the type is a so-called
SQLlchemy "schema" type which may define a constraint (i.e.
:class:`~sqlalchemy.types.Boolean`,
:class:`~sqlalchemy.types.Enum`),
so that the constraint can be dropped.
:param existing_server_default: Optional; The existing
default value of the column. Required on MySQL if
an existing default is not being changed; else MySQL
removes the default.
:param existing_nullable: Optional; the existing nullability
of the column. Required on MySQL if the existing nullability
is not being changed; else MySQL sets this to NULL.
:param existing_autoincrement: Optional; the existing autoincrement
of the column. Used for MySQL's system of altering a column
that specifies ``AUTO_INCREMENT``.
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
"""
compiler = self.impl.dialect.statement_compiler(
self.impl.dialect,
None
)
def _count_constraint(constraint):
return not isinstance(
constraint,
sa_schema.PrimaryKeyConstraint) and \
(not constraint._create_rule or
constraint._create_rule(compiler))
if existing_type and type_:
t = self._table(table_name,
sa_schema.Column(column_name, existing_type),
schema=schema
)
for constraint in t.constraints:
if _count_constraint(constraint):
self.impl.drop_constraint(constraint)
self.impl.alter_column(table_name, column_name,
nullable=nullable,
server_default=server_default,
name=new_column_name,
type_=type_,
schema=schema,
autoincrement=autoincrement,
existing_type=existing_type,
existing_server_default=existing_server_default,
existing_nullable=existing_nullable,
existing_autoincrement=existing_autoincrement
)
if type_:
t = self._table(table_name,
sa_schema.Column(column_name, type_),
schema=schema
)
for constraint in t.constraints:
if _count_constraint(constraint):
self.impl.add_constraint(constraint)
def f(self, name):
"""Indicate a string name that has already had a naming convention
applied to it.
This feature combines with the SQLAlchemy ``naming_convention`` feature
to disambiguate constraint names that have already had naming
conventions applied to them, versus those that have not. This is
necessary in the case that the ``"%(constraint_name)s"`` token
is used within a naming convention, so that it can be identified
that this particular name should remain fixed.
If the :meth:`.Operations.f` is used on a constraint, the naming
convention will not take effect::
op.add_column('t', 'x', Boolean(name=op.f('ck_bool_t_x')))
Above, the CHECK constraint generated will have the name
``ck_bool_t_x`` regardless of whether or not a naming convention is
in use.
Alternatively, if a naming convention is in use, and 'f' is not used,
names will be converted along conventions. If the ``target_metadata``
contains the naming convention
``{"ck": "ck_bool_%(table_name)s_%(constraint_name)s"}``, then the
output of the following:
op.add_column('t', 'x', Boolean(name='x'))
will be::
CONSTRAINT ck_bool_t_x CHECK (x in (1, 0)))
The function is rendered in the output of autogenerate when
a particular constraint name is already converted, for SQLAlchemy
version **0.9.4 and greater only**. Even though ``naming_convention``
was introduced in 0.9.2, the string disambiguation service is new
as of 0.9.4.
.. versionadded:: 0.6.4
"""
if conv:
return conv(name)
else:
raise NotImplementedError(
"op.f() feature requires SQLAlchemy 0.9.4 or greater.")
def add_column(self, table_name, column, schema=None):
"""Issue an "add column" instruction using the current
migration context.
e.g.::
from alembic import op
from sqlalchemy import Column, String
op.add_column('organization',
Column('name', String())
)
The provided :class:`~sqlalchemy.schema.Column` object can also
specify a :class:`~sqlalchemy.schema.ForeignKey`, referencing
a remote table name. Alembic will automatically generate a stub
"referenced" table and emit a second ALTER statement in order
to add the constraint separately::
from alembic import op
from sqlalchemy import Column, INTEGER, ForeignKey
op.add_column('organization',
Column('account_id', INTEGER, ForeignKey('accounts.id'))
)
Note that this statement uses the :class:`~sqlalchemy.schema.Column`
construct as is from the SQLAlchemy library. In particular,
default values to be created on the database side are
specified using the ``server_default`` parameter, and not
``default`` which only specifies Python-side defaults::
from alembic import op
from sqlalchemy import Column, TIMESTAMP, func
# specify "DEFAULT NOW" along with the column add
op.add_column('account',
Column('timestamp', TIMESTAMP, server_default=func.now())
)
:param table_name: String name of the parent table.
:param column: a :class:`sqlalchemy.schema.Column` object
representing the new column.
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
"""
t = self._table(table_name, column, schema=schema)
self.impl.add_column(
table_name,
column,
schema=schema
)
for constraint in t.constraints:
if not isinstance(constraint, sa_schema.PrimaryKeyConstraint):
self.impl.add_constraint(constraint)
def drop_column(self, table_name, column_name, **kw):
"""Issue a "drop column" instruction using the current
migration context.
e.g.::
drop_column('organization', 'account_id')
:param table_name: name of table
:param column_name: name of column
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
:param mssql_drop_check: Optional boolean. When ``True``, on
Microsoft SQL Server only, first
drop the CHECK constraint on the column using a
SQL-script-compatible
block that selects into a @variable from sys.check_constraints,
then exec's a separate DROP CONSTRAINT for that constraint.
:param mssql_drop_default: Optional boolean. When ``True``, on
Microsoft SQL Server only, first
drop the DEFAULT constraint on the column using a
SQL-script-compatible
block that selects into a @variable from sys.default_constraints,
then exec's a separate DROP CONSTRAINT for that default.
:param mssql_drop_foreign_key: Optional boolean. When ``True``, on
Microsoft SQL Server only, first
drop a single FOREIGN KEY constraint on the column using a
SQL-script-compatible
block that selects into a @variable from
sys.foreign_keys/sys.foreign_key_columns,
then exec's a separate DROP CONSTRAINT for that default. Only
works if the column has exactly one FK constraint which refers to
it, at the moment.
.. versionadded:: 0.6.2
"""
self.impl.drop_column(
table_name,
self._column(column_name, NULLTYPE),
**kw
)
def create_primary_key(self, name, table_name, cols, schema=None):
"""Issue a "create primary key" instruction using the current
migration context.
e.g.::
from alembic import op
op.create_primary_key(
"pk_my_table", "my_table",
["id", "version"]
)
This internally generates a :class:`~sqlalchemy.schema.Table` object
containing the necessary columns, then generates a new
:class:`~sqlalchemy.schema.PrimaryKeyConstraint`
object which it then associates with the
:class:`~sqlalchemy.schema.Table`.
Any event listeners associated with this action will be fired
off normally. The :class:`~sqlalchemy.schema.AddConstraint`
construct is ultimately used to generate the ALTER statement.
.. versionadded:: 0.5.0
:param name: Name of the primary key constraint. The name is necessary
so that an ALTER statement can be emitted. For setups that
use an automated naming scheme such as that described at
:ref:`sqla:constraint_naming_conventions`
``name`` here can be ``None``, as the event listener will
apply the name to the constraint object when it is associated
with the table.
:param table_name: String name of the target table.
:param cols: a list of string column names to be applied to the
primary key constraint.
:param schema: Optional schema name of the table.
"""
self.impl.add_constraint(
self._primary_key_constraint(name, table_name, cols,
schema)
)
def create_foreign_key(self, name, source, referent, local_cols,
remote_cols, onupdate=None, ondelete=None,
deferrable=None, initially=None, match=None,
source_schema=None, referent_schema=None,
**dialect_kw):
"""Issue a "create foreign key" instruction using the
current migration context.
e.g.::
from alembic import op
op.create_foreign_key(
"fk_user_address", "address",
"user", ["user_id"], ["id"])
This internally generates a :class:`~sqlalchemy.schema.Table` object
containing the necessary columns, then generates a new
:class:`~sqlalchemy.schema.ForeignKeyConstraint`
object which it then associates with the
:class:`~sqlalchemy.schema.Table`.
Any event listeners associated with this action will be fired
off normally. The :class:`~sqlalchemy.schema.AddConstraint`
construct is ultimately used to generate the ALTER statement.
:param name: Name of the foreign key constraint. The name is necessary
so that an ALTER statement can be emitted. For setups that
use an automated naming scheme such as that described at
:ref:`sqla:constraint_naming_conventions`,
``name`` here can be ``None``, as the event listener will
apply the name to the constraint object when it is associated
with the table.
:param source: String name of the source table.
:param referent: String name of the destination table.
:param local_cols: a list of string column names in the
source table.
:param remote_cols: a list of string column names in the
remote table.
:param onupdate: Optional string. If set, emit ON UPDATE <value> when
issuing DDL for this constraint. Typical values include CASCADE,
DELETE and RESTRICT.
:param ondelete: Optional string. If set, emit ON DELETE <value> when
issuing DDL for this constraint. Typical values include CASCADE,
DELETE and RESTRICT.
:param deferrable: optional bool. If set, emit DEFERRABLE or NOT
DEFERRABLE when issuing DDL for this constraint.
:param source_schema: Optional schema name of the source table.
:param referent_schema: Optional schema name of the destination table.
"""
self.impl.add_constraint(
self._foreign_key_constraint(name, source, referent,
local_cols, remote_cols,
onupdate=onupdate, ondelete=ondelete,
deferrable=deferrable,
source_schema=source_schema,
referent_schema=referent_schema,
initially=initially, match=match,
**dialect_kw)
)
def create_unique_constraint(self, name, source, local_cols,
schema=None, **kw):
"""Issue a "create unique constraint" instruction using the
current migration context.
e.g.::
from alembic import op
op.create_unique_constraint("uq_user_name", "user", ["name"])
This internally generates a :class:`~sqlalchemy.schema.Table` object
containing the necessary columns, then generates a new
:class:`~sqlalchemy.schema.UniqueConstraint`
object which it then associates with the
:class:`~sqlalchemy.schema.Table`.
Any event listeners associated with this action will be fired
off normally. The :class:`~sqlalchemy.schema.AddConstraint`
construct is ultimately used to generate the ALTER statement.
:param name: Name of the unique constraint. The name is necessary
so that an ALTER statement can be emitted. For setups that
use an automated naming scheme such as that described at
:ref:`sqla:constraint_naming_conventions`,
``name`` here can be ``None``, as the event listener will
apply the name to the constraint object when it is associated
with the table.
:param source: String name of the source table. Dotted schema names are
supported.
:param local_cols: a list of string column names in the
source table.
:param deferrable: optional bool. If set, emit DEFERRABLE or
NOT DEFERRABLE when issuing DDL for this constraint.
:param initially: optional string. If set, emit INITIALLY <value>
when issuing DDL for this constraint.
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
"""
self.impl.add_constraint(
self._unique_constraint(name, source, local_cols,
schema=schema, **kw)
)
def create_check_constraint(self, name, source, condition,
schema=None, **kw):
"""Issue a "create check constraint" instruction using the
current migration context.
e.g.::
from alembic import op
from sqlalchemy.sql import column, func
op.create_check_constraint(
"ck_user_name_len",
"user",
func.len(column('name')) > 5
)
CHECK constraints are usually against a SQL expression, so ad-hoc
table metadata is usually needed. The function will convert the given
arguments into a :class:`sqlalchemy.schema.CheckConstraint` bound
to an anonymous table in order to emit the CREATE statement.
:param name: Name of the check constraint. The name is necessary
so that an ALTER statement can be emitted. For setups that
use an automated naming scheme such as that described at
:ref:`sqla:constraint_naming_conventions`,
``name`` here can be ``None``, as the event listener will
apply the name to the constraint object when it is associated
with the table.
:param source: String name of the source table.
:param condition: SQL expression that's the condition of the
constraint. Can be a string or SQLAlchemy expression language
structure.
:param deferrable: optional bool. If set, emit DEFERRABLE or
NOT DEFERRABLE when issuing DDL for this constraint.
:param initially: optional string. If set, emit INITIALLY <value>
when issuing DDL for this constraint.
:param schema: Optional schema name to operate within.
..versionadded:: 0.4.0
"""
self.impl.add_constraint(
self._check_constraint(
name, source, condition, schema=schema, **kw)
)
def create_table(self, name, *columns, **kw):
"""Issue a "create table" instruction using the current migration
context.
This directive receives an argument list similar to that of the
traditional :class:`sqlalchemy.schema.Table` construct, but without the
metadata::
from sqlalchemy import INTEGER, VARCHAR, NVARCHAR, Column
from alembic import op
op.create_table(
'account',
Column('id', INTEGER, primary_key=True),
Column('name', VARCHAR(50), nullable=False),
Column('description', NVARCHAR(200))
Column('timestamp', TIMESTAMP, server_default=func.now())
)
Note that :meth:`.create_table` accepts
:class:`~sqlalchemy.schema.Column`
constructs directly from the SQLAlchemy library. In particular,
default values to be created on the database side are
specified using the ``server_default`` parameter, and not
``default`` which only specifies Python-side defaults::
from alembic import op
from sqlalchemy import Column, TIMESTAMP, func
# specify "DEFAULT NOW" along with the "timestamp" column
op.create_table('account',
Column('id', INTEGER, primary_key=True),
Column('timestamp', TIMESTAMP, server_default=func.now())
)
:param name: Name of the table
:param \*columns: collection of :class:`~sqlalchemy.schema.Column`
objects within
the table, as well as optional :class:`~sqlalchemy.schema.Constraint`
objects
and :class:`~.sqlalchemy.schema.Index` objects.
:param schema: Optional schema name to operate within.
:param \**kw: Other keyword arguments are passed to the underlying
:class:`sqlalchemy.schema.Table` object created for the command.
"""
self.impl.create_table(
self._table(name, *columns, **kw)
)
def drop_table(self, name, **kw):
"""Issue a "drop table" instruction using the current
migration context.
e.g.::
drop_table("accounts")
:param name: Name of the table
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
:param \**kw: Other keyword arguments are passed to the underlying
:class:`sqlalchemy.schema.Table` object created for the command.
"""
self.impl.drop_table(
self._table(name, **kw)
)
def create_index(self, name, table_name, columns, schema=None, **kw):
"""Issue a "create index" instruction using the current
migration context.
e.g.::
from alembic import op
op.create_index('ik_test', 't1', ['foo', 'bar'])
Functional indexes can be produced by using the
:func:`sqlalchemy.sql.expression.text` construct::
from alembic import op
from sqlalchemy import text
op.create_index('ik_test', 't1', [text('lower(foo)')])
.. versionadded:: 0.6.7 support for making use of the
:func:`~sqlalchemy.sql.expression.text` construct in
conjunction with
:meth:`.Operations.create_index` in
order to produce functional expressions within CREATE INDEX.
:param name: name of the index.
:param table_name: name of the owning table.
.. versionchanged:: 0.5.0
The ``tablename`` parameter is now named ``table_name``.
As this is a positional argument, the old name is no
longer present.
:param columns: a list consisting of string column names and/or
:func:`~sqlalchemy.sql.expression.text` constructs.
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
"""
self.impl.create_index(
self._index(name, table_name, columns, schema=schema, **kw)
)
@util._with_legacy_names([('tablename', 'table_name')])
def drop_index(self, name, table_name=None, schema=None):
"""Issue a "drop index" instruction using the current
migration context.
e.g.::
drop_index("accounts")
:param name: name of the index.
:param table_name: name of the owning table. Some
backends such as Microsoft SQL Server require this.
.. versionchanged:: 0.5.0
The ``tablename`` parameter is now named ``table_name``.
The old name will continue to function for backwards
compatibility.
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
"""
# need a dummy column name here since SQLAlchemy
# 0.7.6 and further raises on Index with no columns
self.impl.drop_index(
self._index(name, table_name, ['x'], schema=schema)
)
@util._with_legacy_names([("type", "type_")])
def drop_constraint(self, name, table_name, type_=None, schema=None):
"""Drop a constraint of the given name, typically via DROP CONSTRAINT.
:param name: name of the constraint.
:param table_name: table name.
.. versionchanged:: 0.5.0
The ``tablename`` parameter is now named ``table_name``.
As this is a positional argument, the old name is no
longer present.
:param ``type_``: optional, required on MySQL. can be
'foreignkey', 'primary', 'unique', or 'check'.
.. versionchanged:: 0.5.0
The ``type`` parameter is now named ``type_``. The old name
``type`` will remain for backwards compatibility.
.. versionadded:: 0.3.6 'primary' qualfier to enable
dropping of MySQL primary key constraints.
:param schema: Optional schema name to operate within.
.. versionadded:: 0.4.0
"""
t = self._table(table_name, schema=schema)
types = {
'foreignkey': lambda name: sa_schema.ForeignKeyConstraint(
[], [], name=name),
'primary': sa_schema.PrimaryKeyConstraint,
'unique': sa_schema.UniqueConstraint,
'check': lambda name: sa_schema.CheckConstraint("", name=name),
None: sa_schema.Constraint
}
try:
const = types[type_]
except KeyError:
raise TypeError("'type' can be one of %s" %
", ".join(sorted(repr(x) for x in types)))
const = const(name=name)
t.append_constraint(const)
self.impl.drop_constraint(const)
def bulk_insert(self, table, rows, multiinsert=True):
"""Issue a "bulk insert" operation using the current
migration context.
This provides a means of representing an INSERT of multiple rows
which works equally well in the context of executing on a live
connection as well as that of generating a SQL script. In the
case of a SQL script, the values are rendered inline into the
statement.
e.g.::
from alembic import op
from datetime import date
from sqlalchemy.sql import table, column
from sqlalchemy import String, Integer, Date
# Create an ad-hoc table to use for the insert statement.
accounts_table = table('account',
column('id', Integer),
column('name', String),
column('create_date', Date)
)
op.bulk_insert(accounts_table,
[
{'id':1, 'name':'John Smith',
'create_date':date(2010, 10, 5)},
{'id':2, 'name':'Ed Williams',
'create_date':date(2007, 5, 27)},
{'id':3, 'name':'Wendy Jones',
'create_date':date(2008, 8, 15)},
]
)
When using --sql mode, some datatypes may not render inline
automatically, such as dates and other special types. When this
issue is present, :meth:`.Operations.inline_literal` may be used::
op.bulk_insert(accounts_table,
[
{'id':1, 'name':'John Smith',
'create_date':op.inline_literal("2010-10-05")},
{'id':2, 'name':'Ed Williams',
'create_date':op.inline_literal("2007-05-27")},
{'id':3, 'name':'Wendy Jones',
'create_date':op.inline_literal("2008-08-15")},
],
multiinsert=False
)
When using :meth:`.Operations.inline_literal` in conjunction with
:meth:`.Operations.bulk_insert`, in order for the statement to work
in "online" (e.g. non --sql) mode, the
:paramref:`~.Operations.bulk_insert.multiinsert`
flag should be set to ``False``, which will have the effect of
individual INSERT statements being emitted to the database, each
with a distinct VALUES clause, so that the "inline" values can
still be rendered, rather than attempting to pass the values
as bound parameters.
.. versionadded:: 0.6.4 :meth:`.Operations.inline_literal` can now
be used with :meth:`.Operations.bulk_insert`, and the
:paramref:`~.Operations.bulk_insert.multiinsert` flag has
been added to assist in this usage when running in "online"
mode.
:param table: a table object which represents the target of the INSERT.
:param rows: a list of dictionaries indicating rows.
:param multiinsert: when at its default of True and --sql mode is not
enabled, the INSERT statement will be executed using
"executemany()" style, where all elements in the list of
dictionaries are passed as bound parameters in a single
list. Setting this to False results in individual INSERT
statements being emitted per parameter set, and is needed
in those cases where non-literal values are present in the
parameter sets.
.. versionadded:: 0.6.4
"""
self.impl.bulk_insert(table, rows, multiinsert=multiinsert)
def inline_literal(self, value, type_=None):
"""Produce an 'inline literal' expression, suitable for
using in an INSERT, UPDATE, or DELETE statement.
When using Alembic in "offline" mode, CRUD operations
aren't compatible with SQLAlchemy's default behavior surrounding
literal values,
which is that they are converted into bound values and passed
separately into the ``execute()`` method of the DBAPI cursor.
An offline SQL
script needs to have these rendered inline. While it should
always be noted that inline literal values are an **enormous**
security hole in an application that handles untrusted input,
a schema migration is not run in this context, so
literals are safe to render inline, with the caveat that
advanced types like dates may not be supported directly
by SQLAlchemy.
See :meth:`.execute` for an example usage of
:meth:`.inline_literal`.
:param value: The value to render. Strings, integers, and simple
numerics should be supported. Other types like boolean,
dates, etc. may or may not be supported yet by various
backends.
:param ``type_``: optional - a :class:`sqlalchemy.types.TypeEngine`
subclass stating the type of this value. In SQLAlchemy
expressions, this is usually derived automatically
from the Python type of the value itself, as well as
based on the context in which the value is used.
"""
return impl._literal_bindparam(None, value, type_=type_)
def execute(self, sql, execution_options=None):
"""Execute the given SQL using the current migration context.
In a SQL script context, the statement is emitted directly to the
output stream. There is *no* return result, however, as this
function is oriented towards generating a change script
that can run in "offline" mode. For full interaction
with a connected database, use the "bind" available
from the context::
from alembic import op
connection = op.get_bind()
Also note that any parameterized statement here *will not work*
in offline mode - INSERT, UPDATE and DELETE statements which refer
to literal values would need to render
inline expressions. For simple use cases, the
:meth:`.inline_literal` function can be used for **rudimentary**
quoting of string values. For "bulk" inserts, consider using
:meth:`.bulk_insert`.
For example, to emit an UPDATE statement which is equally
compatible with both online and offline mode::
from sqlalchemy.sql import table, column
from sqlalchemy import String
from alembic import op
account = table('account',
column('name', String)
)
op.execute(
account.update().\\
where(account.c.name==op.inline_literal('account 1')).\\
values({'name':op.inline_literal('account 2')})
)
Note above we also used the SQLAlchemy
:func:`sqlalchemy.sql.expression.table`
and :func:`sqlalchemy.sql.expression.column` constructs to
make a brief, ad-hoc table construct just for our UPDATE
statement. A full :class:`~sqlalchemy.schema.Table` construct
of course works perfectly fine as well, though note it's a
recommended practice to at least ensure the definition of a
table is self-contained within the migration script, rather
than imported from a module that may break compatibility with
older migrations.
:param sql: Any legal SQLAlchemy expression, including:
* a string
* a :func:`sqlalchemy.sql.expression.text` construct.
* a :func:`sqlalchemy.sql.expression.insert` construct.
* a :func:`sqlalchemy.sql.expression.update`,
:func:`sqlalchemy.sql.expression.insert`,
or :func:`sqlalchemy.sql.expression.delete` construct.
* Pretty much anything that's "executable" as described
in :ref:`sqlexpression_toplevel`.
:param execution_options: Optional dictionary of
execution options, will be passed to
:meth:`sqlalchemy.engine.Connection.execution_options`.
"""
self.migration_context.impl.execute(
sql,
execution_options=execution_options)
def get_bind(self):
"""Return the current 'bind'.
Under normal circumstances, this is the
:class:`~sqlalchemy.engine.Connection` currently being used
to emit SQL to the database.
In a SQL script context, this value is ``None``. [TODO: verify this]
"""
return self.migration_context.impl.bind