deb-aodh/aodh/evaluator/threshold.py
Julien Danjou e5db4b75f1 evaluator: remove global conf usage from threshold evaluator
Change-Id: Ie0c9247a7c81da5a902b7b8f0847008392f70c78
2015-07-31 17:40:04 +02:00

227 lines
9.2 KiB
Python

#
# Copyright 2013 Red Hat, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import copy
import datetime
import operator
import six
from ceilometerclient import client as ceiloclient
from oslo_config import cfg
from oslo_log import log
from oslo_utils import timeutils
from aodh import evaluator
from aodh.evaluator import utils
from aodh.i18n import _, _LW
LOG = log.getLogger(__name__)
cfg.CONF.import_opt('http_timeout', 'aodh.service')
cfg.CONF.import_group('service_credentials', 'aodh.service')
COMPARATORS = {
'gt': operator.gt,
'lt': operator.lt,
'ge': operator.ge,
'le': operator.le,
'eq': operator.eq,
'ne': operator.ne,
}
class ThresholdEvaluator(evaluator.Evaluator):
# the sliding evaluation window is extended to allow
# for reporting/ingestion lag
look_back = 1
def __init__(self, conf, notifier):
super(ThresholdEvaluator, self).__init__(conf, notifier)
auth_config = conf.service_credentials
self._client = ceiloclient.get_client(
2,
os_auth_url=auth_config.os_auth_url,
os_region_name=auth_config.os_region_name,
os_tenant_name=auth_config.os_tenant_name,
os_password=auth_config.os_password,
os_username=auth_config.os_username,
os_cacert=auth_config.os_cacert,
os_endpoint_type=auth_config.os_endpoint_type,
insecure=auth_config.insecure,
timeout=conf.http_timeout,
os_user_domain_id=auth_config.os_user_domain_id,
os_project_name=auth_config.os_project_name,
os_project_domain_id=auth_config.os_project_domain_id,
)
@classmethod
def _bound_duration(cls, alarm):
"""Bound the duration of the statistics query."""
now = timeutils.utcnow()
# when exclusion of weak datapoints is enabled, we extend
# the look-back period so as to allow a clearer sample count
# trend to be established
look_back = (cls.look_back if not alarm.rule.get('exclude_outliers')
else alarm.rule['evaluation_periods'])
window = ((alarm.rule.get('period', None) or alarm.rule['granularity'])
* (alarm.rule['evaluation_periods'] + look_back))
start = now - datetime.timedelta(seconds=window)
LOG.debug(_('query stats from %(start)s to '
'%(now)s') % {'start': start, 'now': now})
return start.isoformat(), now.isoformat()
@staticmethod
def _sanitize(alarm, statistics):
"""Sanitize statistics."""
LOG.debug(_('sanitize stats %s') % statistics)
if alarm.rule.get('exclude_outliers'):
key = operator.attrgetter('count')
mean = utils.mean(statistics, key)
stddev = utils.stddev(statistics, key, mean)
lower = mean - 2 * stddev
upper = mean + 2 * stddev
inliers, outliers = utils.anomalies(statistics, key, lower, upper)
if outliers:
LOG.debug(_('excluded weak datapoints with sample counts %s'),
[s.count for s in outliers])
statistics = inliers
else:
LOG.debug('no excluded weak datapoints')
# in practice statistics are always sorted by period start, not
# strictly required by the API though
statistics = statistics[-alarm.rule['evaluation_periods']:]
result_statistics = [getattr(stat, alarm.rule['statistic'])
for stat in statistics]
LOG.debug(_('pruned statistics to %d') % len(statistics))
return result_statistics
def _statistics(self, alarm, start, end):
"""Retrieve statistics over the current window."""
after = dict(field='timestamp', op='ge', value=start)
before = dict(field='timestamp', op='le', value=end)
query = copy.copy(alarm.rule['query'])
query.extend([before, after])
LOG.debug(_('stats query %s') % query)
try:
return self._client.statistics.list(
meter_name=alarm.rule['meter_name'], q=query,
period=alarm.rule['period'])
except Exception:
LOG.exception(_('alarm stats retrieval failed'))
return []
def _sufficient(self, alarm, statistics):
"""Check for the sufficiency of the data for evaluation.
Ensure there is sufficient data for evaluation, transitioning to
unknown otherwise.
"""
sufficient = len(statistics) >= alarm.rule['evaluation_periods']
if not sufficient and alarm.state != evaluator.UNKNOWN:
LOG.warn(_LW('Expecting %(expected)d datapoints but only get '
'%(actual)d') % {
'expected': alarm.rule['evaluation_periods'],
'actual': len(statistics)})
# Reason is not same as log message because we want to keep
# consistent since thirdparty software may depend on old format.
reason = _('%d datapoints are unknown') % alarm.rule[
'evaluation_periods']
last = None if not statistics else statistics[-1]
reason_data = self._reason_data('unknown',
alarm.rule['evaluation_periods'],
last)
self._refresh(alarm, evaluator.UNKNOWN, reason, reason_data)
return sufficient
@staticmethod
def _reason_data(disposition, count, most_recent):
"""Create a reason data dictionary for this evaluator type."""
return {'type': 'threshold', 'disposition': disposition,
'count': count, 'most_recent': most_recent}
@classmethod
def _reason(cls, alarm, statistics, distilled, state):
"""Fabricate reason string."""
count = len(statistics)
disposition = 'inside' if state == evaluator.OK else 'outside'
last = statistics[-1]
transition = alarm.state != state
reason_data = cls._reason_data(disposition, count, last)
if transition:
return (_('Transition to %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent:'
' %(most_recent)s')
% dict(reason_data, state=state)), reason_data
return (_('Remaining as %(state)s due to %(count)d samples'
' %(disposition)s threshold, most recent: %(most_recent)s')
% dict(reason_data, state=state)), reason_data
def _transition(self, alarm, statistics, compared):
"""Transition alarm state if necessary.
The transition rules are currently hardcoded as:
- transitioning from a known state requires an unequivocal
set of datapoints
- transitioning from unknown is on the basis of the most
recent datapoint if equivocal
Ultimately this will be policy-driven.
"""
distilled = all(compared)
unequivocal = distilled or not any(compared)
unknown = alarm.state == evaluator.UNKNOWN
continuous = alarm.repeat_actions
if unequivocal:
state = evaluator.ALARM if distilled else evaluator.OK
reason, reason_data = self._reason(alarm, statistics,
distilled, state)
if alarm.state != state or continuous:
self._refresh(alarm, state, reason, reason_data)
elif unknown or continuous:
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
state = trending_state if unknown else alarm.state
reason, reason_data = self._reason(alarm, statistics,
distilled, state)
self._refresh(alarm, state, reason, reason_data)
def evaluate(self, alarm):
if not self.within_time_constraint(alarm):
LOG.debug(_('Attempted to evaluate alarm %s, but it is not '
'within its time constraint.') % alarm.alarm_id)
return
start, end = self._bound_duration(alarm)
statistics = self._statistics(alarm, start, end)
statistics = self._sanitize(alarm, statistics)
if self._sufficient(alarm, statistics):
def _compare(value):
op = COMPARATORS[alarm.rule['comparison_operator']]
limit = alarm.rule['threshold']
LOG.debug(_('comparing value %(value)s against threshold'
' %(limit)s') %
{'value': value, 'limit': limit})
return op(value, limit)
self._transition(alarm,
statistics,
list(six.moves.map(_compare, statistics)))