a5f8d66d6e
Change-Id: Ia567c3aeb7f8516d0834dc8e4c3852e43a687043
246 lines
9.3 KiB
Python
246 lines
9.3 KiB
Python
#
|
|
# Copyright 2013 Red Hat, Inc
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import collections
|
|
import re
|
|
|
|
from oslo_utils import timeutils
|
|
import six
|
|
|
|
from ceilometer.i18n import _
|
|
from ceilometer.openstack.common import log
|
|
from ceilometer import sample
|
|
from ceilometer import transformer
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
|
|
class ScalingTransformer(transformer.TransformerBase):
|
|
"""Transformer to apply a scaling conversion."""
|
|
|
|
def __init__(self, source=None, target=None, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
|
|
:param source: dict containing source sample unit
|
|
:param target: dict containing target sample name, type,
|
|
unit and scaling factor (a missing value
|
|
connotes no change)
|
|
"""
|
|
source = source or {}
|
|
target = target or {}
|
|
self.source = source
|
|
self.target = target
|
|
self.scale = target.get('scale')
|
|
LOG.debug(_('scaling conversion transformer with source:'
|
|
' %(source)s target: %(target)s:')
|
|
% {'source': source,
|
|
'target': target})
|
|
super(ScalingTransformer, self).__init__(**kwargs)
|
|
|
|
def _scale(self, s):
|
|
"""Apply the scaling factor.
|
|
|
|
Either a straight multiplicative factor or else a string to be eval'd.
|
|
"""
|
|
ns = transformer.Namespace(s.as_dict())
|
|
|
|
scale = self.scale
|
|
return ((eval(scale, {}, ns) if isinstance(scale, six.string_types)
|
|
else s.volume * scale) if scale else s.volume)
|
|
|
|
def _map(self, s, attr):
|
|
"""Apply the name or unit mapping if configured."""
|
|
mapped = None
|
|
from_ = self.source.get('map_from')
|
|
to_ = self.target.get('map_to')
|
|
if from_ and to_:
|
|
if from_.get(attr) and to_.get(attr):
|
|
try:
|
|
mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
|
|
except Exception:
|
|
pass
|
|
return mapped or self.target.get(attr, getattr(s, attr))
|
|
|
|
def _convert(self, s, growth=1):
|
|
"""Transform the appropriate sample fields."""
|
|
return sample.Sample(
|
|
name=self._map(s, 'name'),
|
|
unit=self._map(s, 'unit'),
|
|
type=self.target.get('type', s.type),
|
|
volume=self._scale(s) * growth,
|
|
user_id=s.user_id,
|
|
project_id=s.project_id,
|
|
resource_id=s.resource_id,
|
|
timestamp=s.timestamp,
|
|
resource_metadata=s.resource_metadata
|
|
)
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug(_('handling sample %s'), (s,))
|
|
if self.source.get('unit', s.unit) == s.unit:
|
|
s = self._convert(s)
|
|
LOG.debug(_('converted to: %s'), (s,))
|
|
return s
|
|
|
|
|
|
class RateOfChangeTransformer(ScalingTransformer):
|
|
"""Transformer based on the rate of change of a sample volume.
|
|
|
|
For example taking the current and previous volumes of a cumulative sample
|
|
and producing a gauge value based on the proportion of some maximum used.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""Initialize transformer with configured parameters."""
|
|
super(RateOfChangeTransformer, self).__init__(**kwargs)
|
|
self.cache = {}
|
|
self.scale = self.scale or '1'
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug(_('handling sample %s'), (s,))
|
|
key = s.name + s.resource_id
|
|
prev = self.cache.get(key)
|
|
timestamp = timeutils.parse_isotime(s.timestamp)
|
|
self.cache[key] = (s.volume, timestamp)
|
|
|
|
if prev:
|
|
prev_volume = prev[0]
|
|
prev_timestamp = prev[1]
|
|
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
|
|
# we only allow negative deltas for noncumulative samples, whereas
|
|
# for cumulative we assume that a reset has occurred in the interim
|
|
# so that the current volume gives a lower bound on growth
|
|
volume_delta = (s.volume - prev_volume
|
|
if (prev_volume <= s.volume or
|
|
s.type != sample.TYPE_CUMULATIVE)
|
|
else s.volume)
|
|
rate_of_change = ((1.0 * volume_delta / time_delta)
|
|
if time_delta else 0.0)
|
|
|
|
s = self._convert(s, rate_of_change)
|
|
LOG.debug(_('converted to: %s'), (s,))
|
|
else:
|
|
LOG.warn(_('dropping sample with no predecessor: %s'),
|
|
(s,))
|
|
s = None
|
|
return s
|
|
|
|
|
|
class AggregatorTransformer(ScalingTransformer):
|
|
"""Transformer that aggregates samples.
|
|
|
|
Aggregation goes until a threshold or/and a retention_time, and then
|
|
flushes them out into the wild.
|
|
|
|
Example:
|
|
To aggregate sample by resource_metadata and keep the
|
|
resource_metadata of the latest received sample;
|
|
|
|
AggregatorTransformer(retention_time=60, resource_metadata='last')
|
|
|
|
To aggregate sample by user_id and resource_metadata and keep the
|
|
user_id of the first received sample and drop the resource_metadata.
|
|
|
|
AggregatorTransformer(size=15, user_id='first',
|
|
resource_metadata='drop')
|
|
"""
|
|
|
|
def __init__(self, size=1, retention_time=None,
|
|
project_id=None, user_id=None, resource_metadata="last",
|
|
**kwargs):
|
|
super(AggregatorTransformer, self).__init__(**kwargs)
|
|
self.samples = {}
|
|
self.counts = collections.defaultdict(int)
|
|
self.size = int(size) if size else None
|
|
self.retention_time = float(retention_time) if retention_time else None
|
|
self.initial_timestamp = None
|
|
self.aggregated_samples = 0
|
|
|
|
self.key_attributes = []
|
|
self.merged_attribute_policy = {}
|
|
|
|
self._init_attribute('project_id', project_id)
|
|
self._init_attribute('user_id', user_id)
|
|
self._init_attribute('resource_metadata', resource_metadata,
|
|
is_droppable=True, mandatory=True)
|
|
|
|
def _init_attribute(self, name, value, is_droppable=False,
|
|
mandatory=False):
|
|
drop = ['drop'] if is_droppable else []
|
|
if value or mandatory:
|
|
if value not in ['last', 'first'] + drop:
|
|
LOG.warn('%s is unknown (%s), using last' % (name, value))
|
|
value = 'last'
|
|
self.merged_attribute_policy[name] = value
|
|
else:
|
|
self.key_attributes.append(name)
|
|
|
|
def _get_unique_key(self, s):
|
|
# NOTE(arezmerita): in samples generated by ceilometer middleware,
|
|
# when accessing without authentication publicly readable/writable
|
|
# swift containers, the project_id and the user_id are missing.
|
|
# They will be replaced by <undefined> for unique key construction.
|
|
keys = ['<undefined>' if getattr(s, f) is None else getattr(s, f)
|
|
for f in self.key_attributes]
|
|
non_aggregated_keys = "-".join(keys)
|
|
# NOTE(sileht): it assumes, a meter always have the same unit/type
|
|
return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)
|
|
|
|
def handle_sample(self, context, sample_):
|
|
if not self.initial_timestamp:
|
|
self.initial_timestamp = timeutils.parse_isotime(sample_.timestamp)
|
|
|
|
self.aggregated_samples += 1
|
|
key = self._get_unique_key(sample_)
|
|
self.counts[key] += 1
|
|
if key not in self.samples:
|
|
self.samples[key] = self._convert(sample_)
|
|
if self.merged_attribute_policy[
|
|
'resource_metadata'] == 'drop':
|
|
self.samples[key].resource_metadata = {}
|
|
else:
|
|
if sample_.type == sample.TYPE_CUMULATIVE:
|
|
self.samples[key].volume = self._scale(sample_)
|
|
else:
|
|
self.samples[key].volume += self._scale(sample_)
|
|
for field in self.merged_attribute_policy:
|
|
if self.merged_attribute_policy[field] == 'last':
|
|
setattr(self.samples[key], field,
|
|
getattr(sample_, field))
|
|
|
|
def flush(self, context):
|
|
if not self.initial_timestamp:
|
|
return []
|
|
|
|
expired = (self.retention_time and
|
|
timeutils.is_older_than(self.initial_timestamp,
|
|
self.retention_time))
|
|
full = self.aggregated_samples >= self.size
|
|
if full or expired:
|
|
x = self.samples.values()
|
|
# gauge aggregates need to be averages
|
|
for s in x:
|
|
if s.type == sample.TYPE_GAUGE:
|
|
key = self._get_unique_key(s)
|
|
s.volume /= self.counts[key]
|
|
self.samples.clear()
|
|
self.counts.clear()
|
|
self.aggregated_samples = 0
|
|
self.initial_timestamp = None
|
|
return x
|
|
return []
|