c612727ff8
oslo.log has graduated from oslo-incubator, and openstack.common.log has been removed from oslo-incubator, so let's use the new one. NOTE1:openstack.common.log registers its options at import time, but oslo.log needs to call register_options() explicitly. NOTE2: split unit test case in tests/objectstore/test_swift_middleware.py to avoid duplicate cli option register exception, see NOTE1. Change-Id: Ida30808dbe0c584919755c207ca4ee4b91963a17
205 lines
8.2 KiB
Python
205 lines
8.2 KiB
Python
#
|
|
# Copyright 2013 Red Hat, Inc
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import datetime
|
|
import operator
|
|
|
|
from oslo_log import log
|
|
from oslo_utils import timeutils
|
|
|
|
from ceilometer.alarm import evaluator
|
|
from ceilometer.alarm.evaluator import utils
|
|
from ceilometer.i18n import _, _LW
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
COMPARATORS = {
|
|
'gt': operator.gt,
|
|
'lt': operator.lt,
|
|
'ge': operator.ge,
|
|
'le': operator.le,
|
|
'eq': operator.eq,
|
|
'ne': operator.ne,
|
|
}
|
|
|
|
|
|
class ThresholdEvaluator(evaluator.Evaluator):
|
|
|
|
# the sliding evaluation window is extended to allow
|
|
# for reporting/ingestion lag
|
|
look_back = 1
|
|
|
|
@classmethod
|
|
def _bound_duration(cls, alarm, constraints):
|
|
"""Bound the duration of the statistics query."""
|
|
now = timeutils.utcnow()
|
|
# when exclusion of weak datapoints is enabled, we extend
|
|
# the look-back period so as to allow a clearer sample count
|
|
# trend to be established
|
|
look_back = (cls.look_back if not alarm.rule.get('exclude_outliers')
|
|
else alarm.rule['evaluation_periods'])
|
|
window = (alarm.rule['period'] *
|
|
(alarm.rule['evaluation_periods'] + look_back))
|
|
start = now - datetime.timedelta(seconds=window)
|
|
LOG.debug(_('query stats from %(start)s to '
|
|
'%(now)s') % {'start': start, 'now': now})
|
|
after = dict(field='timestamp', op='ge', value=start.isoformat())
|
|
before = dict(field='timestamp', op='le', value=now.isoformat())
|
|
constraints.extend([before, after])
|
|
return constraints
|
|
|
|
@staticmethod
|
|
def _sanitize(alarm, statistics):
|
|
"""Sanitize statistics."""
|
|
LOG.debug(_('sanitize stats %s') % statistics)
|
|
if alarm.rule.get('exclude_outliers'):
|
|
key = operator.attrgetter('count')
|
|
mean = utils.mean(statistics, key)
|
|
stddev = utils.stddev(statistics, key, mean)
|
|
lower = mean - 2 * stddev
|
|
upper = mean + 2 * stddev
|
|
inliers, outliers = utils.anomalies(statistics, key, lower, upper)
|
|
if outliers:
|
|
LOG.debug(_('excluded weak datapoints with sample counts %s'),
|
|
[s.count for s in outliers])
|
|
statistics = inliers
|
|
else:
|
|
LOG.debug('no excluded weak datapoints')
|
|
|
|
# in practice statistics are always sorted by period start, not
|
|
# strictly required by the API though
|
|
statistics = statistics[-alarm.rule['evaluation_periods']:]
|
|
LOG.debug(_('pruned statistics to %d') % len(statistics))
|
|
return statistics
|
|
|
|
def _statistics(self, alarm, query):
|
|
"""Retrieve statistics over the current window."""
|
|
LOG.debug(_('stats query %s') % query)
|
|
try:
|
|
return self._client.statistics.list(
|
|
meter_name=alarm.rule['meter_name'], q=query,
|
|
period=alarm.rule['period'])
|
|
except Exception:
|
|
LOG.exception(_('alarm stats retrieval failed'))
|
|
return []
|
|
|
|
def _sufficient(self, alarm, statistics):
|
|
"""Check for the sufficiency of the data for evaluation.
|
|
|
|
Ensure there is sufficient data for evaluation, transitioning to
|
|
unknown otherwise.
|
|
"""
|
|
sufficient = len(statistics) >= alarm.rule['evaluation_periods']
|
|
if not sufficient and alarm.state != evaluator.UNKNOWN:
|
|
LOG.warn(_LW('Expecting %(expected)d datapoints but only get '
|
|
'%(actual)d') % {
|
|
'expected': alarm.rule['evaluation_periods'],
|
|
'actual': len(statistics)})
|
|
# Reason is not same as log message because we want to keep
|
|
# consistent since thirdparty software may depend on old format.
|
|
reason = _('%d datapoints are unknown') % alarm.rule[
|
|
'evaluation_periods']
|
|
last = None if not statistics else (
|
|
getattr(statistics[-1], alarm.rule['statistic']))
|
|
reason_data = self._reason_data('unknown',
|
|
alarm.rule['evaluation_periods'],
|
|
last)
|
|
self._refresh(alarm, evaluator.UNKNOWN, reason, reason_data)
|
|
return sufficient
|
|
|
|
@staticmethod
|
|
def _reason_data(disposition, count, most_recent):
|
|
"""Create a reason data dictionary for this evaluator type."""
|
|
return {'type': 'threshold', 'disposition': disposition,
|
|
'count': count, 'most_recent': most_recent}
|
|
|
|
@classmethod
|
|
def _reason(cls, alarm, statistics, distilled, state):
|
|
"""Fabricate reason string."""
|
|
count = len(statistics)
|
|
disposition = 'inside' if state == evaluator.OK else 'outside'
|
|
last = getattr(statistics[-1], alarm.rule['statistic'])
|
|
transition = alarm.state != state
|
|
reason_data = cls._reason_data(disposition, count, last)
|
|
if transition:
|
|
return (_('Transition to %(state)s due to %(count)d samples'
|
|
' %(disposition)s threshold, most recent:'
|
|
' %(most_recent)s')
|
|
% dict(reason_data, state=state)), reason_data
|
|
return (_('Remaining as %(state)s due to %(count)d samples'
|
|
' %(disposition)s threshold, most recent: %(most_recent)s')
|
|
% dict(reason_data, state=state)), reason_data
|
|
|
|
def _transition(self, alarm, statistics, compared):
|
|
"""Transition alarm state if necessary.
|
|
|
|
The transition rules are currently hardcoded as:
|
|
|
|
- transitioning from a known state requires an unequivocal
|
|
set of datapoints
|
|
|
|
- transitioning from unknown is on the basis of the most
|
|
recent datapoint if equivocal
|
|
|
|
Ultimately this will be policy-driven.
|
|
"""
|
|
distilled = all(compared)
|
|
unequivocal = distilled or not any(compared)
|
|
unknown = alarm.state == evaluator.UNKNOWN
|
|
continuous = alarm.repeat_actions
|
|
|
|
if unequivocal:
|
|
state = evaluator.ALARM if distilled else evaluator.OK
|
|
reason, reason_data = self._reason(alarm, statistics,
|
|
distilled, state)
|
|
if alarm.state != state or continuous:
|
|
self._refresh(alarm, state, reason, reason_data)
|
|
elif unknown or continuous:
|
|
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
|
|
state = trending_state if unknown else alarm.state
|
|
reason, reason_data = self._reason(alarm, statistics,
|
|
distilled, state)
|
|
self._refresh(alarm, state, reason, reason_data)
|
|
|
|
def evaluate(self, alarm):
|
|
if not self.within_time_constraint(alarm):
|
|
LOG.debug(_('Attempted to evaluate alarm %s, but it is not '
|
|
'within its time constraint.') % alarm.alarm_id)
|
|
return
|
|
|
|
query = self._bound_duration(
|
|
alarm,
|
|
alarm.rule['query']
|
|
)
|
|
|
|
statistics = self._sanitize(
|
|
alarm,
|
|
self._statistics(alarm, query)
|
|
)
|
|
|
|
if self._sufficient(alarm, statistics):
|
|
def _compare(stat):
|
|
op = COMPARATORS[alarm.rule['comparison_operator']]
|
|
value = getattr(stat, alarm.rule['statistic'])
|
|
limit = alarm.rule['threshold']
|
|
LOG.debug(_('comparing value %(value)s against threshold'
|
|
' %(limit)s') %
|
|
{'value': value, 'limit': limit})
|
|
return op(value, limit)
|
|
|
|
self._transition(alarm,
|
|
statistics,
|
|
[_compare(statistic) for statistic in statistics])
|