c79b598259
all transformers will now require a grouping key. the pipeline will take grouping keys from all transformers in it's definition. using the set of keys, the values will be pulled from the datapoint, hashed, and sent to a pipeline. if no transformers are applied, samples will be grouped by resource_id and events will be grouped by event_type. Implement blueprint distributed-coordinated-notifications Change-Id: Ief462d19655c238e5951881a58e183084d37ac13
254 lines
9.6 KiB
Python
254 lines
9.6 KiB
Python
#
|
|
# Copyright 2013 Red Hat, Inc
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import collections
|
|
import re
|
|
|
|
from oslo_log import log
|
|
from oslo_utils import timeutils
|
|
import six
|
|
|
|
from ceilometer.i18n import _
|
|
from ceilometer import sample
|
|
from ceilometer import transformer
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
|
|
class ScalingTransformer(transformer.TransformerBase):
|
|
"""Transformer to apply a scaling conversion."""
|
|
|
|
grouping_keys = ['resource_id']
|
|
|
|
def __init__(self, source=None, target=None, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
|
|
:param source: dict containing source sample unit
|
|
:param target: dict containing target sample name, type,
|
|
unit and scaling factor (a missing value
|
|
connotes no change)
|
|
"""
|
|
source = source or {}
|
|
target = target or {}
|
|
self.source = source
|
|
self.target = target
|
|
self.scale = target.get('scale')
|
|
LOG.debug('scaling conversion transformer with source:'
|
|
' %(source)s target: %(target)s:', {'source': source,
|
|
'target': target})
|
|
super(ScalingTransformer, self).__init__(**kwargs)
|
|
|
|
def _scale(self, s):
|
|
"""Apply the scaling factor.
|
|
|
|
Either a straight multiplicative factor or else a string to be eval'd.
|
|
"""
|
|
ns = transformer.Namespace(s.as_dict())
|
|
|
|
scale = self.scale
|
|
return ((eval(scale, {}, ns) if isinstance(scale, six.string_types)
|
|
else s.volume * scale) if scale else s.volume)
|
|
|
|
def _map(self, s, attr):
|
|
"""Apply the name or unit mapping if configured."""
|
|
mapped = None
|
|
from_ = self.source.get('map_from')
|
|
to_ = self.target.get('map_to')
|
|
if from_ and to_:
|
|
if from_.get(attr) and to_.get(attr):
|
|
try:
|
|
mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
|
|
except Exception:
|
|
pass
|
|
return mapped or self.target.get(attr, getattr(s, attr))
|
|
|
|
def _convert(self, s, growth=1):
|
|
"""Transform the appropriate sample fields."""
|
|
return sample.Sample(
|
|
name=self._map(s, 'name'),
|
|
unit=self._map(s, 'unit'),
|
|
type=self.target.get('type', s.type),
|
|
volume=self._scale(s) * growth,
|
|
user_id=s.user_id,
|
|
project_id=s.project_id,
|
|
resource_id=s.resource_id,
|
|
timestamp=s.timestamp,
|
|
resource_metadata=s.resource_metadata
|
|
)
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug('handling sample %s', s)
|
|
if self.source.get('unit', s.unit) == s.unit:
|
|
s = self._convert(s)
|
|
LOG.debug('converted to: %s', s)
|
|
return s
|
|
|
|
|
|
class RateOfChangeTransformer(ScalingTransformer):
|
|
"""Transformer based on the rate of change of a sample volume.
|
|
|
|
For example taking the current and previous volumes of a cumulative sample
|
|
and producing a gauge value based on the proportion of some maximum used.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""Initialize transformer with configured parameters."""
|
|
super(RateOfChangeTransformer, self).__init__(**kwargs)
|
|
self.cache = {}
|
|
self.scale = self.scale or '1'
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug('handling sample %s', s)
|
|
key = s.name + s.resource_id
|
|
prev = self.cache.get(key)
|
|
timestamp = timeutils.parse_isotime(s.timestamp)
|
|
self.cache[key] = (s.volume, timestamp)
|
|
|
|
if prev:
|
|
prev_volume = prev[0]
|
|
prev_timestamp = prev[1]
|
|
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
|
|
# disallow violations of the arrow of time
|
|
if time_delta < 0:
|
|
LOG.warn(_('dropping out of time order sample: %s'), (s,))
|
|
# Reset the cache to the newer sample.
|
|
self.cache[key] = prev
|
|
return None
|
|
# we only allow negative volume deltas for noncumulative
|
|
# samples, whereas for cumulative we assume that a reset has
|
|
# occurred in the interim so that the current volume gives a
|
|
# lower bound on growth
|
|
volume_delta = (s.volume - prev_volume
|
|
if (prev_volume <= s.volume or
|
|
s.type != sample.TYPE_CUMULATIVE)
|
|
else s.volume)
|
|
rate_of_change = ((1.0 * volume_delta / time_delta)
|
|
if time_delta else 0.0)
|
|
|
|
s = self._convert(s, rate_of_change)
|
|
LOG.debug('converted to: %s', s)
|
|
else:
|
|
LOG.warn(_('dropping sample with no predecessor: %s'),
|
|
(s,))
|
|
s = None
|
|
return s
|
|
|
|
|
|
class AggregatorTransformer(ScalingTransformer):
|
|
"""Transformer that aggregates samples.
|
|
|
|
Aggregation goes until a threshold or/and a retention_time, and then
|
|
flushes them out into the wild.
|
|
|
|
Example:
|
|
To aggregate sample by resource_metadata and keep the
|
|
resource_metadata of the latest received sample;
|
|
|
|
AggregatorTransformer(retention_time=60, resource_metadata='last')
|
|
|
|
To aggregate sample by user_id and resource_metadata and keep the
|
|
user_id of the first received sample and drop the resource_metadata.
|
|
|
|
AggregatorTransformer(size=15, user_id='first',
|
|
resource_metadata='drop')
|
|
"""
|
|
|
|
def __init__(self, size=1, retention_time=None,
|
|
project_id=None, user_id=None, resource_metadata="last",
|
|
**kwargs):
|
|
super(AggregatorTransformer, self).__init__(**kwargs)
|
|
self.samples = {}
|
|
self.counts = collections.defaultdict(int)
|
|
self.size = int(size) if size else None
|
|
self.retention_time = float(retention_time) if retention_time else None
|
|
self.initial_timestamp = None
|
|
self.aggregated_samples = 0
|
|
|
|
self.key_attributes = []
|
|
self.merged_attribute_policy = {}
|
|
|
|
self._init_attribute('project_id', project_id)
|
|
self._init_attribute('user_id', user_id)
|
|
self._init_attribute('resource_metadata', resource_metadata,
|
|
is_droppable=True, mandatory=True)
|
|
|
|
def _init_attribute(self, name, value, is_droppable=False,
|
|
mandatory=False):
|
|
drop = ['drop'] if is_droppable else []
|
|
if value or mandatory:
|
|
if value not in ['last', 'first'] + drop:
|
|
LOG.warn('%s is unknown (%s), using last' % (name, value))
|
|
value = 'last'
|
|
self.merged_attribute_policy[name] = value
|
|
else:
|
|
self.key_attributes.append(name)
|
|
|
|
def _get_unique_key(self, s):
|
|
# NOTE(arezmerita): in samples generated by ceilometer middleware,
|
|
# when accessing without authentication publicly readable/writable
|
|
# swift containers, the project_id and the user_id are missing.
|
|
# They will be replaced by <undefined> for unique key construction.
|
|
keys = ['<undefined>' if getattr(s, f) is None else getattr(s, f)
|
|
for f in self.key_attributes]
|
|
non_aggregated_keys = "-".join(keys)
|
|
# NOTE(sileht): it assumes, a meter always have the same unit/type
|
|
return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)
|
|
|
|
def handle_sample(self, context, sample_):
|
|
if not self.initial_timestamp:
|
|
self.initial_timestamp = timeutils.parse_isotime(sample_.timestamp)
|
|
|
|
self.aggregated_samples += 1
|
|
key = self._get_unique_key(sample_)
|
|
self.counts[key] += 1
|
|
if key not in self.samples:
|
|
self.samples[key] = self._convert(sample_)
|
|
if self.merged_attribute_policy[
|
|
'resource_metadata'] == 'drop':
|
|
self.samples[key].resource_metadata = {}
|
|
else:
|
|
if sample_.type == sample.TYPE_CUMULATIVE:
|
|
self.samples[key].volume = self._scale(sample_)
|
|
else:
|
|
self.samples[key].volume += self._scale(sample_)
|
|
for field in self.merged_attribute_policy:
|
|
if self.merged_attribute_policy[field] == 'last':
|
|
setattr(self.samples[key], field,
|
|
getattr(sample_, field))
|
|
|
|
def flush(self, context):
|
|
if not self.initial_timestamp:
|
|
return []
|
|
|
|
expired = (self.retention_time and
|
|
timeutils.is_older_than(self.initial_timestamp,
|
|
self.retention_time))
|
|
full = self.aggregated_samples >= self.size
|
|
if full or expired:
|
|
x = list(self.samples.values())
|
|
# gauge aggregates need to be averages
|
|
for s in x:
|
|
if s.type == sample.TYPE_GAUGE:
|
|
key = self._get_unique_key(s)
|
|
s.volume /= self.counts[key]
|
|
self.samples.clear()
|
|
self.counts.clear()
|
|
self.aggregated_samples = 0
|
|
self.initial_timestamp = None
|
|
return x
|
|
return []
|