b7cd3a99b1
* Replace "resp.status_code / 100" with "resp.status_code // 100" to use integer division, not float division, on Python 3 * Replace also "int(status / 100)" with "status // 100" in other files Change-Id: I609065529ffbfc718a7b382b191e588bd5ed3933
234 lines
8.8 KiB
Python
234 lines
8.8 KiB
Python
#
|
|
# Copyright 2015 eNovance
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import datetime
|
|
import operator
|
|
|
|
from oslo_config import cfg
|
|
from oslo_log import log
|
|
from oslo_serialization import jsonutils
|
|
from oslo_utils import timeutils
|
|
import requests
|
|
import six.moves
|
|
|
|
from ceilometer.alarm import evaluator
|
|
from ceilometer.i18n import _
|
|
from ceilometer import keystone_client
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
COMPARATORS = {
|
|
'gt': operator.gt,
|
|
'lt': operator.lt,
|
|
'ge': operator.ge,
|
|
'le': operator.le,
|
|
'eq': operator.eq,
|
|
'ne': operator.ne,
|
|
}
|
|
|
|
OPTS = [
|
|
cfg.StrOpt('gnocchi_url',
|
|
default="http://localhost:8041",
|
|
help='URL to Gnocchi.'),
|
|
]
|
|
|
|
cfg.CONF.register_opts(OPTS, group="alarms")
|
|
cfg.CONF.import_opt('http_timeout', 'ceilometer.service')
|
|
|
|
|
|
class GnocchiThresholdEvaluator(evaluator.Evaluator):
|
|
|
|
# the sliding evaluation window is extended to allow
|
|
# for reporting/ingestion lag
|
|
look_back = 1
|
|
|
|
# minimum number of datapoints within sliding window to
|
|
# avoid unknown state
|
|
quorum = 1
|
|
|
|
def __init__(self, notifier):
|
|
super(GnocchiThresholdEvaluator, self).__init__(notifier)
|
|
self.gnocchi_url = cfg.CONF.alarms.gnocchi_url
|
|
self._ks_client = None
|
|
|
|
@property
|
|
def ks_client(self):
|
|
if self._ks_client is None:
|
|
self._ks_client = keystone_client.get_client()
|
|
return self._ks_client
|
|
|
|
def _get_headers(self, content_type="application/json"):
|
|
return {
|
|
'Content-Type': content_type,
|
|
'X-Auth-Token': self.ks_client.auth_token,
|
|
}
|
|
|
|
def _statistics(self, alarm, start, end):
|
|
"""Retrieve statistics over the current window."""
|
|
method = 'get'
|
|
req = {
|
|
'url': self.gnocchi_url + "/v1",
|
|
'headers': self._get_headers(),
|
|
'params': {
|
|
'aggregation': alarm.rule['aggregation_method'],
|
|
'start': start,
|
|
'end': end,
|
|
}
|
|
}
|
|
|
|
if alarm.type == 'gnocchi_aggregation_by_resources_threshold':
|
|
method = 'post'
|
|
req['url'] += "/aggregation/resource/%s/metric/%s" % (
|
|
alarm.rule['resource_type'], alarm.rule['metric'])
|
|
req['data'] = alarm.rule['query']
|
|
|
|
elif alarm.type == 'gnocchi_aggregation_by_metrics_threshold':
|
|
req['url'] += "/aggregation/metric"
|
|
req['params']['metric[]'] = alarm.rule['metrics']
|
|
|
|
elif alarm.type == 'gnocchi_resources_threshold':
|
|
req['url'] += "/resource/%s/%s/metric/%s/measures" % (
|
|
alarm.rule['resource_type'],
|
|
alarm.rule['resource_id'], alarm.rule['metric'])
|
|
|
|
LOG.debug(_('stats query %s') % req['url'])
|
|
try:
|
|
r = getattr(requests, method)(**req)
|
|
except Exception:
|
|
LOG.exception(_('alarm stats retrieval failed'))
|
|
return []
|
|
if r.status_code // 100 != 2:
|
|
LOG.exception(_('alarm stats retrieval failed: %s') % r.text)
|
|
return []
|
|
else:
|
|
return jsonutils.loads(r.text)
|
|
|
|
@classmethod
|
|
def _bound_duration(cls, alarm):
|
|
"""Bound the duration of the statistics query."""
|
|
now = timeutils.utcnow()
|
|
# when exclusion of weak datapoints is enabled, we extend
|
|
# the look-back period so as to allow a clearer sample count
|
|
# trend to be established
|
|
window = (alarm.rule['granularity'] *
|
|
(alarm.rule['evaluation_periods'] + cls.look_back))
|
|
start = now - datetime.timedelta(seconds=window)
|
|
LOG.debug(_('query stats from %(start)s to '
|
|
'%(now)s') % {'start': start, 'now': now})
|
|
return start.isoformat(), now.isoformat()
|
|
|
|
def _sufficient(self, alarm, statistics):
|
|
"""Check for the sufficiency of the data for evaluation.
|
|
|
|
Ensure there is sufficient data for evaluation, transitioning to
|
|
unknown otherwise.
|
|
"""
|
|
sufficient = len(statistics) >= self.quorum
|
|
if not sufficient and alarm.state != evaluator.UNKNOWN:
|
|
reason = _('%d datapoints are unknown') % alarm.rule[
|
|
'evaluation_periods']
|
|
reason_data = self._reason_data('unknown',
|
|
alarm.rule['evaluation_periods'],
|
|
None)
|
|
self._refresh(alarm, evaluator.UNKNOWN, reason, reason_data)
|
|
return sufficient
|
|
|
|
@staticmethod
|
|
def _reason_data(disposition, count, most_recent):
|
|
"""Create a reason data dictionary for this evaluator type."""
|
|
return {'type': 'threshold', 'disposition': disposition,
|
|
'count': count, 'most_recent': most_recent}
|
|
|
|
@classmethod
|
|
def _reason(cls, alarm, statistics, distilled, state):
|
|
"""Fabricate reason string."""
|
|
count = len(statistics)
|
|
disposition = 'inside' if state == evaluator.OK else 'outside'
|
|
last = statistics[-1]
|
|
transition = alarm.state != state
|
|
reason_data = cls._reason_data(disposition, count, last)
|
|
if transition:
|
|
return (_('Transition to %(state)s due to %(count)d samples'
|
|
' %(disposition)s threshold, most recent:'
|
|
' %(most_recent)s')
|
|
% dict(reason_data, state=state)), reason_data
|
|
return (_('Remaining as %(state)s due to %(count)d samples'
|
|
' %(disposition)s threshold, most recent: %(most_recent)s')
|
|
% dict(reason_data, state=state)), reason_data
|
|
|
|
def _transition(self, alarm, statistics, compared):
|
|
"""Transition alarm state if necessary.
|
|
|
|
The transition rules are currently hardcoded as:
|
|
|
|
- transitioning from a known state requires an unequivocal
|
|
set of datapoints
|
|
|
|
- transitioning from unknown is on the basis of the most
|
|
recent datapoint if equivocal
|
|
|
|
Ultimately this will be policy-driven.
|
|
"""
|
|
distilled = all(compared)
|
|
unequivocal = distilled or not any(compared)
|
|
unknown = alarm.state == evaluator.UNKNOWN
|
|
continuous = alarm.repeat_actions
|
|
|
|
if unequivocal:
|
|
state = evaluator.ALARM if distilled else evaluator.OK
|
|
reason, reason_data = self._reason(alarm, statistics,
|
|
distilled, state)
|
|
if alarm.state != state or continuous:
|
|
self._refresh(alarm, state, reason, reason_data)
|
|
elif unknown or continuous:
|
|
trending_state = evaluator.ALARM if compared[-1] else evaluator.OK
|
|
state = trending_state if unknown else alarm.state
|
|
reason, reason_data = self._reason(alarm, statistics,
|
|
distilled, state)
|
|
self._refresh(alarm, state, reason, reason_data)
|
|
|
|
@staticmethod
|
|
def _select_best_granularity(alarm, statistics):
|
|
"""Return the datapoints that correspond to the alarm granularity"""
|
|
# TODO(sileht): if there's no direct match, but there is an archive
|
|
# policy with granularity that's an even divisor or the period,
|
|
# we could potentially do a mean-of-means (or max-of-maxes or whatever,
|
|
# but not a stddev-of-stddevs).
|
|
return [stats[2] for stats in statistics
|
|
if stats[1] == alarm.rule['granularity']]
|
|
|
|
def evaluate(self, alarm):
|
|
if not self.within_time_constraint(alarm):
|
|
LOG.debug(_('Attempted to evaluate alarm %s, but it is not '
|
|
'within its time constraint.') % alarm.alarm_id)
|
|
return
|
|
|
|
start, end = self._bound_duration(alarm)
|
|
statistics = self._statistics(alarm, start, end)
|
|
statistics = self._select_best_granularity(alarm, statistics)
|
|
|
|
if self._sufficient(alarm, statistics):
|
|
def _compare(value):
|
|
op = COMPARATORS[alarm.rule['comparison_operator']]
|
|
limit = alarm.rule['threshold']
|
|
LOG.debug(_('comparing value %(value)s against threshold'
|
|
' %(limit)s') %
|
|
{'value': value, 'limit': limit})
|
|
return op(value, limit)
|
|
|
|
self._transition(alarm,
|
|
statistics,
|
|
list(six.moves.map(_compare, statistics)))
|