a5f8d66d6e
Change-Id: Ia567c3aeb7f8516d0834dc8e4c3852e43a687043
747 lines
32 KiB
Python
747 lines
32 KiB
Python
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
"""SQLAlchemy storage backend."""
|
|
|
|
from __future__ import absolute_import
|
|
import datetime
|
|
import hashlib
|
|
import os
|
|
|
|
from oslo.db import exception as dbexc
|
|
from oslo.db.sqlalchemy import session as db_session
|
|
from oslo.serialization import jsonutils
|
|
from oslo_config import cfg
|
|
from oslo_utils import timeutils
|
|
import six
|
|
import sqlalchemy as sa
|
|
from sqlalchemy import and_
|
|
from sqlalchemy import distinct
|
|
from sqlalchemy import func
|
|
from sqlalchemy.orm import aliased
|
|
|
|
import ceilometer
|
|
from ceilometer.i18n import _
|
|
from ceilometer.openstack.common import log
|
|
from ceilometer import storage
|
|
from ceilometer.storage import base
|
|
from ceilometer.storage import models as api_models
|
|
from ceilometer.storage.sqlalchemy import models
|
|
from ceilometer.storage.sqlalchemy import utils as sql_utils
|
|
from ceilometer import utils
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
|
|
STANDARD_AGGREGATES = dict(
|
|
avg=func.avg(models.Sample.volume).label('avg'),
|
|
sum=func.sum(models.Sample.volume).label('sum'),
|
|
min=func.min(models.Sample.volume).label('min'),
|
|
max=func.max(models.Sample.volume).label('max'),
|
|
count=func.count(models.Sample.volume).label('count')
|
|
)
|
|
|
|
UNPARAMETERIZED_AGGREGATES = dict(
|
|
stddev=func.stddev_pop(models.Sample.volume).label('stddev')
|
|
)
|
|
|
|
PARAMETERIZED_AGGREGATES = dict(
|
|
validate=dict(
|
|
cardinality=lambda p: p in ['resource_id', 'user_id', 'project_id']
|
|
),
|
|
compute=dict(
|
|
cardinality=lambda p: func.count(
|
|
distinct(getattr(models.Resource, p))
|
|
).label('cardinality/%s' % p)
|
|
)
|
|
)
|
|
|
|
AVAILABLE_CAPABILITIES = {
|
|
'meters': {'query': {'simple': True,
|
|
'metadata': True}},
|
|
'resources': {'query': {'simple': True,
|
|
'metadata': True}},
|
|
'samples': {'pagination': True,
|
|
'groupby': True,
|
|
'query': {'simple': True,
|
|
'metadata': True,
|
|
'complex': True}},
|
|
'statistics': {'groupby': True,
|
|
'query': {'simple': True,
|
|
'metadata': True},
|
|
'aggregation': {'standard': True,
|
|
'selectable': {
|
|
'max': True,
|
|
'min': True,
|
|
'sum': True,
|
|
'avg': True,
|
|
'count': True,
|
|
'stddev': True,
|
|
'cardinality': True}}
|
|
},
|
|
}
|
|
|
|
|
|
AVAILABLE_STORAGE_CAPABILITIES = {
|
|
'storage': {'production_ready': True},
|
|
}
|
|
|
|
|
|
def apply_metaquery_filter(session, query, metaquery):
|
|
"""Apply provided metaquery filter to existing query.
|
|
|
|
:param session: session used for original query
|
|
:param query: Query instance
|
|
:param metaquery: dict with metadata to match on.
|
|
"""
|
|
for k, value in six.iteritems(metaquery):
|
|
key = k[9:] # strip out 'metadata.' prefix
|
|
try:
|
|
_model = sql_utils.META_TYPE_MAP[type(value)]
|
|
except KeyError:
|
|
raise ceilometer.NotImplementedError(
|
|
'Query on %(key)s is of %(value)s '
|
|
'type and is not supported' %
|
|
{"key": k, "value": type(value)})
|
|
else:
|
|
meta_alias = aliased(_model)
|
|
on_clause = and_(models.Resource.internal_id == meta_alias.id,
|
|
meta_alias.meta_key == key)
|
|
# outer join is needed to support metaquery
|
|
# with or operator on non existent metadata field
|
|
# see: test_query_non_existing_metadata_with_result
|
|
# test case.
|
|
query = query.outerjoin(meta_alias, on_clause)
|
|
query = query.filter(meta_alias.value == value)
|
|
|
|
return query
|
|
|
|
|
|
def make_query_from_filter(session, query, sample_filter, require_meter=True):
|
|
"""Return a query dictionary based on the settings in the filter.
|
|
|
|
:param session: session used for original query
|
|
:param query: Query instance
|
|
:param sample_filter: SampleFilter instance
|
|
:param require_meter: If true and the filter does not have a meter,
|
|
raise an error.
|
|
"""
|
|
|
|
if sample_filter.meter:
|
|
query = query.filter(models.Meter.name == sample_filter.meter)
|
|
elif require_meter:
|
|
raise RuntimeError('Missing required meter specifier')
|
|
if sample_filter.source:
|
|
query = query.filter(
|
|
models.Resource.source_id == sample_filter.source)
|
|
if sample_filter.start_timestamp:
|
|
ts_start = sample_filter.start_timestamp
|
|
if sample_filter.start_timestamp_op == 'gt':
|
|
query = query.filter(models.Sample.timestamp > ts_start)
|
|
else:
|
|
query = query.filter(models.Sample.timestamp >= ts_start)
|
|
if sample_filter.end_timestamp:
|
|
ts_end = sample_filter.end_timestamp
|
|
if sample_filter.end_timestamp_op == 'le':
|
|
query = query.filter(models.Sample.timestamp <= ts_end)
|
|
else:
|
|
query = query.filter(models.Sample.timestamp < ts_end)
|
|
if sample_filter.user:
|
|
query = query.filter(models.Resource.user_id == sample_filter.user)
|
|
if sample_filter.project:
|
|
query = query.filter(
|
|
models.Resource.project_id == sample_filter.project)
|
|
if sample_filter.resource:
|
|
query = query.filter(
|
|
models.Resource.resource_id == sample_filter.resource)
|
|
if sample_filter.message_id:
|
|
query = query.filter(
|
|
models.Sample.message_id == sample_filter.message_id)
|
|
|
|
if sample_filter.metaquery:
|
|
query = apply_metaquery_filter(session, query,
|
|
sample_filter.metaquery)
|
|
|
|
return query
|
|
|
|
|
|
class Connection(base.Connection):
|
|
"""Put the data into a SQLAlchemy database.
|
|
|
|
Tables::
|
|
|
|
- meter
|
|
- meter definition
|
|
- { id: meter id
|
|
name: meter name
|
|
type: meter type
|
|
unit: meter unit
|
|
}
|
|
- resource
|
|
- resource definition
|
|
- { internal_id: resource id
|
|
resource_id: resource uuid
|
|
user_id: user uuid
|
|
project_id: project uuid
|
|
source_id: source id
|
|
resource_metadata: metadata dictionary
|
|
metadata_hash: metadata dictionary hash
|
|
}
|
|
- sample
|
|
- the raw incoming data
|
|
- { id: sample id
|
|
meter_id: meter id (->meter.id)
|
|
resource_id: resource id (->resource.internal_id)
|
|
volume: sample volume
|
|
timestamp: datetime
|
|
recorded_at: datetime
|
|
message_signature: message signature
|
|
message_id: message uuid
|
|
}
|
|
"""
|
|
CAPABILITIES = utils.update_nested(base.Connection.CAPABILITIES,
|
|
AVAILABLE_CAPABILITIES)
|
|
STORAGE_CAPABILITIES = utils.update_nested(
|
|
base.Connection.STORAGE_CAPABILITIES,
|
|
AVAILABLE_STORAGE_CAPABILITIES,
|
|
)
|
|
|
|
def __init__(self, url):
|
|
# Set max_retries to 0, since oslo.db in certain cases may attempt
|
|
# to retry making the db connection retried max_retries ^ 2 times
|
|
# in failure case and db reconnection has already been implemented
|
|
# in storage.__init__.get_connection_from_config function
|
|
cfg.CONF.set_override('max_retries', 0, group='database')
|
|
self._engine_facade = db_session.EngineFacade(
|
|
url,
|
|
**dict(cfg.CONF.database.items())
|
|
)
|
|
|
|
def upgrade(self):
|
|
# NOTE(gordc): to minimise memory, only import migration when needed
|
|
from oslo.db.sqlalchemy import migration
|
|
path = os.path.join(os.path.abspath(os.path.dirname(__file__)),
|
|
'sqlalchemy', 'migrate_repo')
|
|
migration.db_sync(self._engine_facade.get_engine(), path)
|
|
|
|
def clear(self):
|
|
engine = self._engine_facade.get_engine()
|
|
for table in reversed(models.Base.metadata.sorted_tables):
|
|
engine.execute(table.delete())
|
|
self._engine_facade._session_maker.close_all()
|
|
engine.dispose()
|
|
|
|
@staticmethod
|
|
def _create_meter(conn, name, type, unit):
|
|
# TODO(gordc): implement lru_cache to improve performance
|
|
try:
|
|
meter = models.Meter.__table__
|
|
trans = conn.begin_nested()
|
|
if conn.dialect.name == 'sqlite':
|
|
trans = conn.begin()
|
|
with trans:
|
|
meter_row = conn.execute(
|
|
sa.select([meter.c.id])
|
|
.where(sa.and_(meter.c.name == name,
|
|
meter.c.type == type,
|
|
meter.c.unit == unit))).first()
|
|
meter_id = meter_row[0] if meter_row else None
|
|
if meter_id is None:
|
|
result = conn.execute(meter.insert(), name=name,
|
|
type=type, unit=unit)
|
|
meter_id = result.inserted_primary_key[0]
|
|
except dbexc.DBDuplicateEntry:
|
|
# retry function to pick up duplicate committed object
|
|
meter_id = Connection._create_meter(conn, name, type, unit)
|
|
|
|
return meter_id
|
|
|
|
@staticmethod
|
|
def _create_resource(conn, res_id, user_id, project_id, source_id,
|
|
rmeta):
|
|
# TODO(gordc): implement lru_cache to improve performance
|
|
try:
|
|
res = models.Resource.__table__
|
|
m_hash = hashlib.md5(jsonutils.dumps(rmeta,
|
|
sort_keys=True)).hexdigest()
|
|
trans = conn.begin_nested()
|
|
if conn.dialect.name == 'sqlite':
|
|
trans = conn.begin()
|
|
with trans:
|
|
res_row = conn.execute(
|
|
sa.select([res.c.internal_id])
|
|
.where(sa.and_(res.c.resource_id == res_id,
|
|
res.c.user_id == user_id,
|
|
res.c.project_id == project_id,
|
|
res.c.source_id == source_id,
|
|
res.c.metadata_hash == m_hash))).first()
|
|
internal_id = res_row[0] if res_row else None
|
|
if internal_id is None:
|
|
result = conn.execute(res.insert(), resource_id=res_id,
|
|
user_id=user_id,
|
|
project_id=project_id,
|
|
source_id=source_id,
|
|
resource_metadata=rmeta,
|
|
metadata_hash=m_hash)
|
|
internal_id = result.inserted_primary_key[0]
|
|
if rmeta and isinstance(rmeta, dict):
|
|
meta_map = {}
|
|
for key, v in utils.dict_to_keyval(rmeta):
|
|
try:
|
|
_model = sql_utils.META_TYPE_MAP[type(v)]
|
|
if meta_map.get(_model) is None:
|
|
meta_map[_model] = []
|
|
meta_map[_model].append(
|
|
{'id': internal_id, 'meta_key': key,
|
|
'value': v})
|
|
except KeyError:
|
|
LOG.warn(_("Unknown metadata type. Key (%s) "
|
|
"will not be queryable."), key)
|
|
for _model in meta_map.keys():
|
|
conn.execute(_model.__table__.insert(),
|
|
meta_map[_model])
|
|
|
|
except dbexc.DBDuplicateEntry:
|
|
# retry function to pick up duplicate committed object
|
|
internal_id = Connection._create_resource(
|
|
conn, res_id, user_id, project_id, source_id, rmeta)
|
|
|
|
return internal_id
|
|
|
|
def record_metering_data(self, data):
|
|
"""Write the data to the backend storage system.
|
|
|
|
:param data: a dictionary such as returned by
|
|
ceilometer.meter.meter_message_from_counter
|
|
"""
|
|
engine = self._engine_facade.get_engine()
|
|
with engine.begin() as conn:
|
|
# Record the raw data for the sample.
|
|
m_id = self._create_meter(conn,
|
|
data['counter_name'],
|
|
data['counter_type'],
|
|
data['counter_unit'])
|
|
res_id = self._create_resource(conn,
|
|
data['resource_id'],
|
|
data['user_id'],
|
|
data['project_id'],
|
|
data['source'],
|
|
data['resource_metadata'])
|
|
sample = models.Sample.__table__
|
|
conn.execute(sample.insert(), meter_id=m_id,
|
|
resource_id=res_id,
|
|
timestamp=data['timestamp'],
|
|
volume=data['counter_volume'],
|
|
message_signature=data['message_signature'],
|
|
message_id=data['message_id'])
|
|
|
|
def clear_expired_metering_data(self, ttl):
|
|
"""Clear expired data from the backend storage system.
|
|
|
|
Clearing occurs according to the time-to-live.
|
|
:param ttl: Number of seconds to keep records for.
|
|
"""
|
|
|
|
session = self._engine_facade.get_session()
|
|
with session.begin():
|
|
end = timeutils.utcnow() - datetime.timedelta(seconds=ttl)
|
|
sample_q = (session.query(models.Sample)
|
|
.filter(models.Sample.timestamp < end))
|
|
|
|
sample_subq = sample_q.subquery()
|
|
for table in [models.MetaText, models.MetaBigInt,
|
|
models.MetaFloat, models.MetaBool]:
|
|
(session.query(table)
|
|
.join(sample_subq, sample_subq.c.id == table.id)
|
|
.delete())
|
|
|
|
rows = sample_q.delete()
|
|
# remove Meter definitions with no matching samples
|
|
(session.query(models.Meter)
|
|
.filter(~models.Meter.samples.any())
|
|
.delete(synchronize_session='fetch'))
|
|
(session.query(models.Resource)
|
|
.filter(~models.Resource.samples.any())
|
|
.delete(synchronize_session='fetch'))
|
|
LOG.info(_("%d samples removed from database"), rows)
|
|
|
|
def get_resources(self, user=None, project=None, source=None,
|
|
start_timestamp=None, start_timestamp_op=None,
|
|
end_timestamp=None, end_timestamp_op=None,
|
|
metaquery=None, resource=None, pagination=None):
|
|
"""Return an iterable of api_models.Resource instances
|
|
|
|
:param user: Optional ID for user that owns the resource.
|
|
:param project: Optional ID for project that owns the resource.
|
|
:param source: Optional source filter.
|
|
:param start_timestamp: Optional modified timestamp start range.
|
|
:param start_timestamp_op: Optional start time operator, like gt, ge.
|
|
:param end_timestamp: Optional modified timestamp end range.
|
|
:param end_timestamp_op: Optional end time operator, like lt, le.
|
|
:param metaquery: Optional dict with metadata to match on.
|
|
:param resource: Optional resource filter.
|
|
:param pagination: Optional pagination query.
|
|
"""
|
|
if pagination:
|
|
raise ceilometer.NotImplementedError('Pagination not implemented')
|
|
|
|
s_filter = storage.SampleFilter(user=user,
|
|
project=project,
|
|
source=source,
|
|
start_timestamp=start_timestamp,
|
|
start_timestamp_op=start_timestamp_op,
|
|
end_timestamp=end_timestamp,
|
|
end_timestamp_op=end_timestamp_op,
|
|
metaquery=metaquery,
|
|
resource=resource)
|
|
|
|
session = self._engine_facade.get_session()
|
|
# get list of resource_ids
|
|
res_q = session.query(distinct(models.Resource.resource_id)).join(
|
|
models.Sample,
|
|
models.Sample.resource_id == models.Resource.internal_id)
|
|
res_q = make_query_from_filter(session, res_q, s_filter,
|
|
require_meter=False)
|
|
|
|
for res_id in res_q.all():
|
|
|
|
# get max and min sample timestamp value
|
|
min_max_q = (session.query(func.max(models.Sample.timestamp)
|
|
.label('max_timestamp'),
|
|
func.min(models.Sample.timestamp)
|
|
.label('min_timestamp'))
|
|
.join(models.Resource,
|
|
models.Resource.internal_id ==
|
|
models.Sample.resource_id)
|
|
.filter(models.Resource.resource_id ==
|
|
res_id[0]))
|
|
|
|
min_max_q = make_query_from_filter(session, min_max_q, s_filter,
|
|
require_meter=False)
|
|
|
|
min_max = min_max_q.first()
|
|
|
|
# get resource details for latest sample
|
|
res_q = (session.query(models.Resource.resource_id,
|
|
models.Resource.user_id,
|
|
models.Resource.project_id,
|
|
models.Resource.source_id,
|
|
models.Resource.resource_metadata)
|
|
.join(models.Sample,
|
|
models.Sample.resource_id ==
|
|
models.Resource.internal_id)
|
|
.filter(models.Sample.timestamp ==
|
|
min_max.max_timestamp)
|
|
.filter(models.Resource.resource_id ==
|
|
res_id[0])
|
|
.order_by(models.Sample.id.desc()).limit(1))
|
|
|
|
res = res_q.first()
|
|
|
|
yield api_models.Resource(
|
|
resource_id=res.resource_id,
|
|
project_id=res.project_id,
|
|
first_sample_timestamp=min_max.min_timestamp,
|
|
last_sample_timestamp=min_max.max_timestamp,
|
|
source=res.source_id,
|
|
user_id=res.user_id,
|
|
metadata=res.resource_metadata
|
|
)
|
|
|
|
def get_meters(self, user=None, project=None, resource=None, source=None,
|
|
metaquery=None, pagination=None):
|
|
"""Return an iterable of api_models.Meter instances
|
|
|
|
:param user: Optional ID for user that owns the resource.
|
|
:param project: Optional ID for project that owns the resource.
|
|
:param resource: Optional ID of the resource.
|
|
:param source: Optional source filter.
|
|
:param metaquery: Optional dict with metadata to match on.
|
|
:param pagination: Optional pagination query.
|
|
"""
|
|
|
|
if pagination:
|
|
raise ceilometer.NotImplementedError('Pagination not implemented')
|
|
|
|
s_filter = storage.SampleFilter(user=user,
|
|
project=project,
|
|
source=source,
|
|
metaquery=metaquery,
|
|
resource=resource)
|
|
|
|
# NOTE(gordc): get latest sample of each meter/resource. we do not
|
|
# filter here as we want to filter only on latest record.
|
|
session = self._engine_facade.get_session()
|
|
subq = session.query(func.max(models.Sample.id).label('id')).join(
|
|
models.Resource,
|
|
models.Resource.internal_id == models.Sample.resource_id).group_by(
|
|
models.Sample.meter_id, models.Resource.resource_id)
|
|
if resource:
|
|
subq = subq.filter(models.Resource.resource_id == resource)
|
|
subq = subq.subquery()
|
|
|
|
# get meter details for samples.
|
|
query_sample = (session.query(models.Sample.meter_id,
|
|
models.Meter.name, models.Meter.type,
|
|
models.Meter.unit,
|
|
models.Resource.resource_id,
|
|
models.Resource.project_id,
|
|
models.Resource.source_id,
|
|
models.Resource.user_id).join(
|
|
subq, subq.c.id == models.Sample.id)
|
|
.join(models.Meter, models.Meter.id == models.Sample.meter_id)
|
|
.join(models.Resource,
|
|
models.Resource.internal_id == models.Sample.resource_id))
|
|
query_sample = make_query_from_filter(session, query_sample, s_filter,
|
|
require_meter=False)
|
|
|
|
for row in query_sample.all():
|
|
yield api_models.Meter(
|
|
name=row.name,
|
|
type=row.type,
|
|
unit=row.unit,
|
|
resource_id=row.resource_id,
|
|
project_id=row.project_id,
|
|
source=row.source_id,
|
|
user_id=row.user_id)
|
|
|
|
@staticmethod
|
|
def _retrieve_samples(query):
|
|
samples = query.all()
|
|
|
|
for s in samples:
|
|
# Remove the id generated by the database when
|
|
# the sample was inserted. It is an implementation
|
|
# detail that should not leak outside of the driver.
|
|
yield api_models.Sample(
|
|
source=s.source_id,
|
|
counter_name=s.counter_name,
|
|
counter_type=s.counter_type,
|
|
counter_unit=s.counter_unit,
|
|
counter_volume=s.counter_volume,
|
|
user_id=s.user_id,
|
|
project_id=s.project_id,
|
|
resource_id=s.resource_id,
|
|
timestamp=s.timestamp,
|
|
recorded_at=s.recorded_at,
|
|
resource_metadata=s.resource_metadata,
|
|
message_id=s.message_id,
|
|
message_signature=s.message_signature,
|
|
)
|
|
|
|
def get_samples(self, sample_filter, limit=None):
|
|
"""Return an iterable of api_models.Samples.
|
|
|
|
:param sample_filter: Filter.
|
|
:param limit: Maximum number of results to return.
|
|
"""
|
|
if limit == 0:
|
|
return []
|
|
|
|
session = self._engine_facade.get_session()
|
|
query = session.query(models.Sample.timestamp,
|
|
models.Sample.recorded_at,
|
|
models.Sample.message_id,
|
|
models.Sample.message_signature,
|
|
models.Sample.volume.label('counter_volume'),
|
|
models.Meter.name.label('counter_name'),
|
|
models.Meter.type.label('counter_type'),
|
|
models.Meter.unit.label('counter_unit'),
|
|
models.Resource.source_id,
|
|
models.Resource.user_id,
|
|
models.Resource.project_id,
|
|
models.Resource.resource_metadata,
|
|
models.Resource.resource_id).join(
|
|
models.Meter, models.Meter.id == models.Sample.meter_id).join(
|
|
models.Resource,
|
|
models.Resource.internal_id == models.Sample.resource_id).order_by(
|
|
models.Sample.timestamp.desc())
|
|
query = make_query_from_filter(session, query, sample_filter,
|
|
require_meter=False)
|
|
if limit:
|
|
query = query.limit(limit)
|
|
return self._retrieve_samples(query)
|
|
|
|
def query_samples(self, filter_expr=None, orderby=None, limit=None):
|
|
if limit == 0:
|
|
return []
|
|
|
|
session = self._engine_facade.get_session()
|
|
query = session.query(models.FullSample)
|
|
transformer = sql_utils.QueryTransformer(models.FullSample, query)
|
|
if filter_expr is not None:
|
|
transformer.apply_filter(filter_expr)
|
|
|
|
transformer.apply_options(orderby, limit)
|
|
return self._retrieve_samples(transformer.get_query())
|
|
|
|
@staticmethod
|
|
def _get_aggregate_functions(aggregate):
|
|
if not aggregate:
|
|
return [f for f in STANDARD_AGGREGATES.values()]
|
|
|
|
functions = []
|
|
|
|
for a in aggregate:
|
|
if a.func in STANDARD_AGGREGATES:
|
|
functions.append(STANDARD_AGGREGATES[a.func])
|
|
elif a.func in UNPARAMETERIZED_AGGREGATES:
|
|
functions.append(UNPARAMETERIZED_AGGREGATES[a.func])
|
|
elif a.func in PARAMETERIZED_AGGREGATES['compute']:
|
|
validate = PARAMETERIZED_AGGREGATES['validate'].get(a.func)
|
|
if not (validate and validate(a.param)):
|
|
raise storage.StorageBadAggregate('Bad aggregate: %s.%s'
|
|
% (a.func, a.param))
|
|
compute = PARAMETERIZED_AGGREGATES['compute'][a.func]
|
|
functions.append(compute(a.param))
|
|
else:
|
|
raise ceilometer.NotImplementedError(
|
|
'Selectable aggregate function %s'
|
|
' is not supported' % a.func)
|
|
|
|
return functions
|
|
|
|
def _make_stats_query(self, sample_filter, groupby, aggregate):
|
|
|
|
select = [
|
|
func.min(models.Sample.timestamp).label('tsmin'),
|
|
func.max(models.Sample.timestamp).label('tsmax'),
|
|
models.Meter.unit
|
|
]
|
|
select.extend(self._get_aggregate_functions(aggregate))
|
|
|
|
session = self._engine_facade.get_session()
|
|
|
|
if groupby:
|
|
group_attributes = []
|
|
for g in groupby:
|
|
if g != 'resource_metadata.instance_type':
|
|
group_attributes.append(getattr(models.Resource, g))
|
|
else:
|
|
group_attributes.append(
|
|
getattr(models.MetaText, 'value')
|
|
.label('resource_metadata.instance_type'))
|
|
|
|
select.extend(group_attributes)
|
|
|
|
query = (
|
|
session.query(*select)
|
|
.join(models.Meter,
|
|
models.Meter.id == models.Sample.meter_id)
|
|
.join(models.Resource,
|
|
models.Resource.internal_id == models.Sample.resource_id)
|
|
.group_by(models.Meter.unit))
|
|
|
|
if groupby:
|
|
for g in groupby:
|
|
if g == 'resource_metadata.instance_type':
|
|
query = query.join(
|
|
models.MetaText,
|
|
models.Resource.internal_id == models.MetaText.id)
|
|
query = query.filter(
|
|
models.MetaText.meta_key == 'instance_type')
|
|
query = query.group_by(*group_attributes)
|
|
|
|
return make_query_from_filter(session, query, sample_filter)
|
|
|
|
@staticmethod
|
|
def _stats_result_aggregates(result, aggregate):
|
|
stats_args = {}
|
|
if isinstance(result.count, (int, long)):
|
|
stats_args['count'] = result.count
|
|
for attr in ['min', 'max', 'sum', 'avg']:
|
|
if hasattr(result, attr):
|
|
stats_args[attr] = getattr(result, attr)
|
|
if aggregate:
|
|
stats_args['aggregate'] = {}
|
|
for a in aggregate:
|
|
key = '%s%s' % (a.func, '/%s' % a.param if a.param else '')
|
|
stats_args['aggregate'][key] = getattr(result, key)
|
|
return stats_args
|
|
|
|
@staticmethod
|
|
def _stats_result_to_model(result, period, period_start,
|
|
period_end, groupby, aggregate):
|
|
stats_args = Connection._stats_result_aggregates(result, aggregate)
|
|
stats_args['unit'] = result.unit
|
|
duration = (timeutils.delta_seconds(result.tsmin, result.tsmax)
|
|
if result.tsmin is not None and result.tsmax is not None
|
|
else None)
|
|
stats_args['duration'] = duration
|
|
stats_args['duration_start'] = result.tsmin
|
|
stats_args['duration_end'] = result.tsmax
|
|
stats_args['period'] = period
|
|
stats_args['period_start'] = period_start
|
|
stats_args['period_end'] = period_end
|
|
stats_args['groupby'] = (dict(
|
|
(g, getattr(result, g)) for g in groupby) if groupby else None)
|
|
return api_models.Statistics(**stats_args)
|
|
|
|
def get_meter_statistics(self, sample_filter, period=None, groupby=None,
|
|
aggregate=None):
|
|
"""Return an iterable of api_models.Statistics instances.
|
|
|
|
Items are containing meter statistics described by the query
|
|
parameters. The filter must have a meter value set.
|
|
"""
|
|
if groupby:
|
|
for group in groupby:
|
|
if group not in ['user_id', 'project_id', 'resource_id',
|
|
'resource_metadata.instance_type']:
|
|
raise ceilometer.NotImplementedError('Unable to group by '
|
|
'these fields')
|
|
|
|
if not period:
|
|
for res in self._make_stats_query(sample_filter,
|
|
groupby,
|
|
aggregate):
|
|
if res.count:
|
|
yield self._stats_result_to_model(res, 0,
|
|
res.tsmin, res.tsmax,
|
|
groupby,
|
|
aggregate)
|
|
return
|
|
|
|
if not (sample_filter.start_timestamp and sample_filter.end_timestamp):
|
|
res = self._make_stats_query(sample_filter,
|
|
None,
|
|
aggregate).first()
|
|
if not res:
|
|
# NOTE(liusheng):The 'res' may be NoneType, because no
|
|
# sample has found with sample filter(s).
|
|
return
|
|
|
|
query = self._make_stats_query(sample_filter, groupby, aggregate)
|
|
# HACK(jd) This is an awful method to compute stats by period, but
|
|
# since we're trying to be SQL agnostic we have to write portable
|
|
# code, so here it is, admire! We're going to do one request to get
|
|
# stats by period. We would like to use GROUP BY, but there's no
|
|
# portable way to manipulate timestamp in SQL, so we can't.
|
|
for period_start, period_end in base.iter_period(
|
|
sample_filter.start_timestamp or res.tsmin,
|
|
sample_filter.end_timestamp or res.tsmax,
|
|
period):
|
|
q = query.filter(models.Sample.timestamp >= period_start)
|
|
q = q.filter(models.Sample.timestamp < period_end)
|
|
for r in q.all():
|
|
if r.count:
|
|
yield self._stats_result_to_model(
|
|
result=r,
|
|
period=int(timeutils.delta_seconds(period_start,
|
|
period_end)),
|
|
period_start=period_start,
|
|
period_end=period_end,
|
|
groupby=groupby,
|
|
aggregate=aggregate
|
|
)
|