deb-ceilometer/ceilometer/transformer/conversions.py
Dan Travis 501143062b Adds timestamp option to Aggregation transformer
Adds an argument to the Aggregation transformer constructor
that allows a user to specify whether to include the timestamp
from either the first or last sample received for a given
aggregated sample.

This addresses an issue with transformer chaining where incorrect
values will sometimes be produced by the Rate of Change
transformer when chaining the Aggregation transformer with the
Rate of Change transformer.

Change-Id: Ib163a80a7e6ddaf58d7cc555fb4f4d87d570b1a1
Closes-Bug: #1539163
2016-02-16 21:56:31 +00:00

341 lines
13 KiB
Python

#
# Copyright 2013 Red Hat, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import collections
import re
from oslo_log import log
from oslo_utils import timeutils
import six
from ceilometer.i18n import _, _LW
from ceilometer import sample
from ceilometer import transformer
LOG = log.getLogger(__name__)
class BaseConversionTransformer(transformer.TransformerBase):
"""Transformer to derive conversion."""
grouping_keys = ['resource_id']
def __init__(self, source=None, target=None, **kwargs):
"""Initialize transformer with configured parameters.
:param source: dict containing source sample unit
:param target: dict containing target sample name, type,
unit and scaling factor (a missing value
connotes no change)
"""
source = source or {}
target = target or {}
self.source = source
self.target = target
super(BaseConversionTransformer, self).__init__(**kwargs)
def _map(self, s, attr):
"""Apply the name or unit mapping if configured."""
mapped = None
from_ = self.source.get('map_from')
to_ = self.target.get('map_to')
if from_ and to_:
if from_.get(attr) and to_.get(attr):
try:
mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
except Exception:
pass
return mapped or self.target.get(attr, getattr(s, attr))
class DeltaTransformer(BaseConversionTransformer):
"""Transformer based on the delta of a sample volume."""
def __init__(self, target=None, growth_only=False, **kwargs):
"""Initialize transformer with configured parameters.
:param growth_only: capture only positive deltas
"""
super(DeltaTransformer, self).__init__(target=target, **kwargs)
self.growth_only = growth_only
self.cache = {}
def handle_sample(self, context, s):
"""Handle a sample, converting if necessary."""
key = s.name + s.resource_id
prev = self.cache.get(key)
timestamp = timeutils.parse_isotime(s.timestamp)
self.cache[key] = (s.volume, timestamp)
if prev:
prev_volume = prev[0]
prev_timestamp = prev[1]
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
# disallow violations of the arrow of time
if time_delta < 0:
LOG.warning(_LW('Dropping out of time order sample: %s'), (s,))
# Reset the cache to the newer sample.
self.cache[key] = prev
return None
volume_delta = s.volume - prev_volume
if self.growth_only and volume_delta < 0:
LOG.warning(_LW('Negative delta detected, dropping value'))
s = None
else:
s = self._convert(s, volume_delta)
LOG.debug('Converted to: %s', s)
else:
LOG.warning(_LW('Dropping sample with no predecessor: %s'), (s,))
s = None
return s
def _convert(self, s, delta):
"""Transform the appropriate sample fields."""
return sample.Sample(
name=self._map(s, 'name'),
unit=s.unit,
type=sample.TYPE_DELTA,
volume=delta,
user_id=s.user_id,
project_id=s.project_id,
resource_id=s.resource_id,
timestamp=s.timestamp,
resource_metadata=s.resource_metadata
)
class ScalingTransformer(BaseConversionTransformer):
"""Transformer to apply a scaling conversion."""
def __init__(self, source=None, target=None, **kwargs):
"""Initialize transformer with configured parameters.
:param source: dict containing source sample unit
:param target: dict containing target sample name, type,
unit and scaling factor (a missing value
connotes no change)
"""
super(ScalingTransformer, self).__init__(source=source, target=target,
**kwargs)
self.scale = self.target.get('scale')
LOG.debug('scaling conversion transformer with source:'
' %(source)s target: %(target)s:', {'source': self.source,
'target': self.target})
def _scale(self, s):
"""Apply the scaling factor.
Either a straight multiplicative factor or else a string to be eval'd.
"""
ns = transformer.Namespace(s.as_dict())
scale = self.scale
return ((eval(scale, {}, ns) if isinstance(scale, six.string_types)
else s.volume * scale) if scale else s.volume)
def _convert(self, s, growth=1):
"""Transform the appropriate sample fields."""
return sample.Sample(
name=self._map(s, 'name'),
unit=self._map(s, 'unit'),
type=self.target.get('type', s.type),
volume=self._scale(s) * growth,
user_id=s.user_id,
project_id=s.project_id,
resource_id=s.resource_id,
timestamp=s.timestamp,
resource_metadata=s.resource_metadata
)
def handle_sample(self, context, s):
"""Handle a sample, converting if necessary."""
LOG.debug('handling sample %s', s)
if self.source.get('unit', s.unit) == s.unit:
s = self._convert(s)
LOG.debug('converted to: %s', s)
return s
class RateOfChangeTransformer(ScalingTransformer):
"""Transformer based on the rate of change of a sample volume.
For example taking the current and previous volumes of a cumulative sample
and producing a gauge value based on the proportion of some maximum used.
"""
def __init__(self, **kwargs):
"""Initialize transformer with configured parameters."""
super(RateOfChangeTransformer, self).__init__(**kwargs)
self.cache = {}
self.scale = self.scale or '1'
def handle_sample(self, context, s):
"""Handle a sample, converting if necessary."""
LOG.debug('handling sample %s', s)
key = s.name + s.resource_id
prev = self.cache.get(key)
timestamp = timeutils.parse_isotime(s.timestamp)
self.cache[key] = (s.volume, timestamp)
if prev:
prev_volume = prev[0]
prev_timestamp = prev[1]
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
# disallow violations of the arrow of time
if time_delta < 0:
LOG.warning(_('dropping out of time order sample: %s'), (s,))
# Reset the cache to the newer sample.
self.cache[key] = prev
return None
# we only allow negative volume deltas for noncumulative
# samples, whereas for cumulative we assume that a reset has
# occurred in the interim so that the current volume gives a
# lower bound on growth
volume_delta = (s.volume - prev_volume
if (prev_volume <= s.volume or
s.type != sample.TYPE_CUMULATIVE)
else s.volume)
rate_of_change = ((1.0 * volume_delta / time_delta)
if time_delta else 0.0)
s = self._convert(s, rate_of_change)
LOG.debug('converted to: %s', s)
else:
LOG.warning(_('dropping sample with no predecessor: %s'),
(s,))
s = None
return s
class AggregatorTransformer(ScalingTransformer):
"""Transformer that aggregates samples.
Aggregation goes until a threshold or/and a retention_time, and then
flushes them out into the wild.
Example:
To aggregate sample by resource_metadata and keep the
resource_metadata of the latest received sample;
AggregatorTransformer(retention_time=60, resource_metadata='last')
To aggregate sample by user_id and resource_metadata and keep the
user_id of the first received sample and drop the resource_metadata.
AggregatorTransformer(size=15, user_id='first',
resource_metadata='drop')
To keep the timestamp of the last received sample rather
than the first:
AggregatorTransformer(timestamp="last")
"""
def __init__(self, size=1, retention_time=None,
project_id=None, user_id=None, resource_metadata="last",
timestamp="first", **kwargs):
super(AggregatorTransformer, self).__init__(**kwargs)
self.samples = {}
self.counts = collections.defaultdict(int)
self.size = int(size) if size else None
self.retention_time = float(retention_time) if retention_time else None
if not (self.size or self.retention_time):
self.size = 1
if timestamp in ["first", "last"]:
self.timestamp = timestamp
else:
self.timestamp = "first"
self.initial_timestamp = None
self.aggregated_samples = 0
self.key_attributes = []
self.merged_attribute_policy = {}
self._init_attribute('project_id', project_id)
self._init_attribute('user_id', user_id)
self._init_attribute('resource_metadata', resource_metadata,
is_droppable=True, mandatory=True)
def _init_attribute(self, name, value, is_droppable=False,
mandatory=False):
drop = ['drop'] if is_droppable else []
if value or mandatory:
if value not in ['last', 'first'] + drop:
LOG.warning('%s is unknown (%s), using last' % (name, value))
value = 'last'
self.merged_attribute_policy[name] = value
else:
self.key_attributes.append(name)
def _get_unique_key(self, s):
# NOTE(arezmerita): in samples generated by ceilometer middleware,
# when accessing without authentication publicly readable/writable
# swift containers, the project_id and the user_id are missing.
# They will be replaced by <undefined> for unique key construction.
keys = ['<undefined>' if getattr(s, f) is None else getattr(s, f)
for f in self.key_attributes]
non_aggregated_keys = "-".join(keys)
# NOTE(sileht): it assumes, a meter always have the same unit/type
return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)
def handle_sample(self, context, sample_):
if not self.initial_timestamp:
self.initial_timestamp = timeutils.parse_isotime(sample_.timestamp)
self.aggregated_samples += 1
key = self._get_unique_key(sample_)
self.counts[key] += 1
if key not in self.samples:
self.samples[key] = self._convert(sample_)
if self.merged_attribute_policy[
'resource_metadata'] == 'drop':
self.samples[key].resource_metadata = {}
else:
if self.timestamp == "last":
self.samples[key].timestamp = sample_.timestamp
if sample_.type == sample.TYPE_CUMULATIVE:
self.samples[key].volume = self._scale(sample_)
else:
self.samples[key].volume += self._scale(sample_)
for field in self.merged_attribute_policy:
if self.merged_attribute_policy[field] == 'last':
setattr(self.samples[key], field,
getattr(sample_, field))
def flush(self, context):
if not self.initial_timestamp:
return []
expired = (self.retention_time and
timeutils.is_older_than(self.initial_timestamp,
self.retention_time))
full = self.size and self.aggregated_samples >= self.size
if full or expired:
x = list(self.samples.values())
# gauge aggregates need to be averages
for s in x:
if s.type == sample.TYPE_GAUGE:
key = self._get_unique_key(s)
s.volume /= self.counts[key]
self.samples.clear()
self.counts.clear()
self.aggregated_samples = 0
self.initial_timestamp = None
return x
return []