501143062b
Adds an argument to the Aggregation transformer constructor that allows a user to specify whether to include the timestamp from either the first or last sample received for a given aggregated sample. This addresses an issue with transformer chaining where incorrect values will sometimes be produced by the Rate of Change transformer when chaining the Aggregation transformer with the Rate of Change transformer. Change-Id: Ib163a80a7e6ddaf58d7cc555fb4f4d87d570b1a1 Closes-Bug: #1539163
341 lines
13 KiB
Python
341 lines
13 KiB
Python
#
|
|
# Copyright 2013 Red Hat, Inc
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import collections
|
|
import re
|
|
|
|
from oslo_log import log
|
|
from oslo_utils import timeutils
|
|
import six
|
|
|
|
from ceilometer.i18n import _, _LW
|
|
from ceilometer import sample
|
|
from ceilometer import transformer
|
|
|
|
LOG = log.getLogger(__name__)
|
|
|
|
|
|
class BaseConversionTransformer(transformer.TransformerBase):
|
|
"""Transformer to derive conversion."""
|
|
|
|
grouping_keys = ['resource_id']
|
|
|
|
def __init__(self, source=None, target=None, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
|
|
:param source: dict containing source sample unit
|
|
:param target: dict containing target sample name, type,
|
|
unit and scaling factor (a missing value
|
|
connotes no change)
|
|
"""
|
|
source = source or {}
|
|
target = target or {}
|
|
self.source = source
|
|
self.target = target
|
|
super(BaseConversionTransformer, self).__init__(**kwargs)
|
|
|
|
def _map(self, s, attr):
|
|
"""Apply the name or unit mapping if configured."""
|
|
mapped = None
|
|
from_ = self.source.get('map_from')
|
|
to_ = self.target.get('map_to')
|
|
if from_ and to_:
|
|
if from_.get(attr) and to_.get(attr):
|
|
try:
|
|
mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
|
|
except Exception:
|
|
pass
|
|
return mapped or self.target.get(attr, getattr(s, attr))
|
|
|
|
|
|
class DeltaTransformer(BaseConversionTransformer):
|
|
"""Transformer based on the delta of a sample volume."""
|
|
|
|
def __init__(self, target=None, growth_only=False, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
|
|
:param growth_only: capture only positive deltas
|
|
"""
|
|
super(DeltaTransformer, self).__init__(target=target, **kwargs)
|
|
self.growth_only = growth_only
|
|
self.cache = {}
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
key = s.name + s.resource_id
|
|
prev = self.cache.get(key)
|
|
timestamp = timeutils.parse_isotime(s.timestamp)
|
|
self.cache[key] = (s.volume, timestamp)
|
|
|
|
if prev:
|
|
prev_volume = prev[0]
|
|
prev_timestamp = prev[1]
|
|
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
|
|
# disallow violations of the arrow of time
|
|
if time_delta < 0:
|
|
LOG.warning(_LW('Dropping out of time order sample: %s'), (s,))
|
|
# Reset the cache to the newer sample.
|
|
self.cache[key] = prev
|
|
return None
|
|
volume_delta = s.volume - prev_volume
|
|
if self.growth_only and volume_delta < 0:
|
|
LOG.warning(_LW('Negative delta detected, dropping value'))
|
|
s = None
|
|
else:
|
|
s = self._convert(s, volume_delta)
|
|
LOG.debug('Converted to: %s', s)
|
|
else:
|
|
LOG.warning(_LW('Dropping sample with no predecessor: %s'), (s,))
|
|
s = None
|
|
return s
|
|
|
|
def _convert(self, s, delta):
|
|
"""Transform the appropriate sample fields."""
|
|
return sample.Sample(
|
|
name=self._map(s, 'name'),
|
|
unit=s.unit,
|
|
type=sample.TYPE_DELTA,
|
|
volume=delta,
|
|
user_id=s.user_id,
|
|
project_id=s.project_id,
|
|
resource_id=s.resource_id,
|
|
timestamp=s.timestamp,
|
|
resource_metadata=s.resource_metadata
|
|
)
|
|
|
|
|
|
class ScalingTransformer(BaseConversionTransformer):
|
|
"""Transformer to apply a scaling conversion."""
|
|
|
|
def __init__(self, source=None, target=None, **kwargs):
|
|
"""Initialize transformer with configured parameters.
|
|
|
|
:param source: dict containing source sample unit
|
|
:param target: dict containing target sample name, type,
|
|
unit and scaling factor (a missing value
|
|
connotes no change)
|
|
"""
|
|
super(ScalingTransformer, self).__init__(source=source, target=target,
|
|
**kwargs)
|
|
self.scale = self.target.get('scale')
|
|
LOG.debug('scaling conversion transformer with source:'
|
|
' %(source)s target: %(target)s:', {'source': self.source,
|
|
'target': self.target})
|
|
|
|
def _scale(self, s):
|
|
"""Apply the scaling factor.
|
|
|
|
Either a straight multiplicative factor or else a string to be eval'd.
|
|
"""
|
|
ns = transformer.Namespace(s.as_dict())
|
|
|
|
scale = self.scale
|
|
return ((eval(scale, {}, ns) if isinstance(scale, six.string_types)
|
|
else s.volume * scale) if scale else s.volume)
|
|
|
|
def _convert(self, s, growth=1):
|
|
"""Transform the appropriate sample fields."""
|
|
return sample.Sample(
|
|
name=self._map(s, 'name'),
|
|
unit=self._map(s, 'unit'),
|
|
type=self.target.get('type', s.type),
|
|
volume=self._scale(s) * growth,
|
|
user_id=s.user_id,
|
|
project_id=s.project_id,
|
|
resource_id=s.resource_id,
|
|
timestamp=s.timestamp,
|
|
resource_metadata=s.resource_metadata
|
|
)
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug('handling sample %s', s)
|
|
if self.source.get('unit', s.unit) == s.unit:
|
|
s = self._convert(s)
|
|
LOG.debug('converted to: %s', s)
|
|
return s
|
|
|
|
|
|
class RateOfChangeTransformer(ScalingTransformer):
|
|
"""Transformer based on the rate of change of a sample volume.
|
|
|
|
For example taking the current and previous volumes of a cumulative sample
|
|
and producing a gauge value based on the proportion of some maximum used.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""Initialize transformer with configured parameters."""
|
|
super(RateOfChangeTransformer, self).__init__(**kwargs)
|
|
self.cache = {}
|
|
self.scale = self.scale or '1'
|
|
|
|
def handle_sample(self, context, s):
|
|
"""Handle a sample, converting if necessary."""
|
|
LOG.debug('handling sample %s', s)
|
|
key = s.name + s.resource_id
|
|
prev = self.cache.get(key)
|
|
timestamp = timeutils.parse_isotime(s.timestamp)
|
|
self.cache[key] = (s.volume, timestamp)
|
|
|
|
if prev:
|
|
prev_volume = prev[0]
|
|
prev_timestamp = prev[1]
|
|
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
|
|
# disallow violations of the arrow of time
|
|
if time_delta < 0:
|
|
LOG.warning(_('dropping out of time order sample: %s'), (s,))
|
|
# Reset the cache to the newer sample.
|
|
self.cache[key] = prev
|
|
return None
|
|
# we only allow negative volume deltas for noncumulative
|
|
# samples, whereas for cumulative we assume that a reset has
|
|
# occurred in the interim so that the current volume gives a
|
|
# lower bound on growth
|
|
volume_delta = (s.volume - prev_volume
|
|
if (prev_volume <= s.volume or
|
|
s.type != sample.TYPE_CUMULATIVE)
|
|
else s.volume)
|
|
rate_of_change = ((1.0 * volume_delta / time_delta)
|
|
if time_delta else 0.0)
|
|
|
|
s = self._convert(s, rate_of_change)
|
|
LOG.debug('converted to: %s', s)
|
|
else:
|
|
LOG.warning(_('dropping sample with no predecessor: %s'),
|
|
(s,))
|
|
s = None
|
|
return s
|
|
|
|
|
|
class AggregatorTransformer(ScalingTransformer):
|
|
"""Transformer that aggregates samples.
|
|
|
|
Aggregation goes until a threshold or/and a retention_time, and then
|
|
flushes them out into the wild.
|
|
|
|
Example:
|
|
To aggregate sample by resource_metadata and keep the
|
|
resource_metadata of the latest received sample;
|
|
|
|
AggregatorTransformer(retention_time=60, resource_metadata='last')
|
|
|
|
To aggregate sample by user_id and resource_metadata and keep the
|
|
user_id of the first received sample and drop the resource_metadata.
|
|
|
|
AggregatorTransformer(size=15, user_id='first',
|
|
resource_metadata='drop')
|
|
|
|
To keep the timestamp of the last received sample rather
|
|
than the first:
|
|
|
|
AggregatorTransformer(timestamp="last")
|
|
|
|
"""
|
|
|
|
def __init__(self, size=1, retention_time=None,
|
|
project_id=None, user_id=None, resource_metadata="last",
|
|
timestamp="first", **kwargs):
|
|
super(AggregatorTransformer, self).__init__(**kwargs)
|
|
self.samples = {}
|
|
self.counts = collections.defaultdict(int)
|
|
self.size = int(size) if size else None
|
|
self.retention_time = float(retention_time) if retention_time else None
|
|
if not (self.size or self.retention_time):
|
|
self.size = 1
|
|
|
|
if timestamp in ["first", "last"]:
|
|
self.timestamp = timestamp
|
|
else:
|
|
self.timestamp = "first"
|
|
|
|
self.initial_timestamp = None
|
|
self.aggregated_samples = 0
|
|
|
|
self.key_attributes = []
|
|
self.merged_attribute_policy = {}
|
|
|
|
self._init_attribute('project_id', project_id)
|
|
self._init_attribute('user_id', user_id)
|
|
self._init_attribute('resource_metadata', resource_metadata,
|
|
is_droppable=True, mandatory=True)
|
|
|
|
def _init_attribute(self, name, value, is_droppable=False,
|
|
mandatory=False):
|
|
drop = ['drop'] if is_droppable else []
|
|
if value or mandatory:
|
|
if value not in ['last', 'first'] + drop:
|
|
LOG.warning('%s is unknown (%s), using last' % (name, value))
|
|
value = 'last'
|
|
self.merged_attribute_policy[name] = value
|
|
else:
|
|
self.key_attributes.append(name)
|
|
|
|
def _get_unique_key(self, s):
|
|
# NOTE(arezmerita): in samples generated by ceilometer middleware,
|
|
# when accessing without authentication publicly readable/writable
|
|
# swift containers, the project_id and the user_id are missing.
|
|
# They will be replaced by <undefined> for unique key construction.
|
|
keys = ['<undefined>' if getattr(s, f) is None else getattr(s, f)
|
|
for f in self.key_attributes]
|
|
non_aggregated_keys = "-".join(keys)
|
|
# NOTE(sileht): it assumes, a meter always have the same unit/type
|
|
return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)
|
|
|
|
def handle_sample(self, context, sample_):
|
|
if not self.initial_timestamp:
|
|
self.initial_timestamp = timeutils.parse_isotime(sample_.timestamp)
|
|
|
|
self.aggregated_samples += 1
|
|
key = self._get_unique_key(sample_)
|
|
self.counts[key] += 1
|
|
if key not in self.samples:
|
|
self.samples[key] = self._convert(sample_)
|
|
if self.merged_attribute_policy[
|
|
'resource_metadata'] == 'drop':
|
|
self.samples[key].resource_metadata = {}
|
|
else:
|
|
if self.timestamp == "last":
|
|
self.samples[key].timestamp = sample_.timestamp
|
|
if sample_.type == sample.TYPE_CUMULATIVE:
|
|
self.samples[key].volume = self._scale(sample_)
|
|
else:
|
|
self.samples[key].volume += self._scale(sample_)
|
|
for field in self.merged_attribute_policy:
|
|
if self.merged_attribute_policy[field] == 'last':
|
|
setattr(self.samples[key], field,
|
|
getattr(sample_, field))
|
|
|
|
def flush(self, context):
|
|
if not self.initial_timestamp:
|
|
return []
|
|
|
|
expired = (self.retention_time and
|
|
timeutils.is_older_than(self.initial_timestamp,
|
|
self.retention_time))
|
|
full = self.size and self.aggregated_samples >= self.size
|
|
if full or expired:
|
|
x = list(self.samples.values())
|
|
# gauge aggregates need to be averages
|
|
for s in x:
|
|
if s.type == sample.TYPE_GAUGE:
|
|
key = self._get_unique_key(s)
|
|
s.volume /= self.counts[key]
|
|
self.samples.clear()
|
|
self.counts.clear()
|
|
self.aggregated_samples = 0
|
|
self.initial_timestamp = None
|
|
return x
|
|
return []
|