# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import itertools import six from six.moves import xrange from heat.common import exception from heat.openstack.common.gettextutils import _ class CircularDependencyException(exception.HeatException): msg_fmt = _("Circular Dependency Found: %(cycle)s") class Node(object): '''A node in a dependency graph.''' def __init__(self, requires=None, required_by=None): ''' Initialise the node, optionally with a set of keys this node requires and/or a set of keys that this node is required by. ''' self.require = requires and requires.copy() or set() self.satisfy = required_by and required_by.copy() or set() def copy(self): '''Return a copy of the node.''' return Node(self.require, self.satisfy) def reverse_copy(self): '''Return a copy of the node with the edge directions reversed.''' return Node(self.satisfy, self.require) def required_by(self, source=None): ''' List the keys that require this node, and optionally add a new one. ''' if source is not None: self.satisfy.add(source) return iter(self.satisfy) def requires(self, target): '''Add a key that this node requires.''' self.require.add(target) def __isub__(self, target): '''Remove a key that this node requires.''' self.require.remove(target) return self def __nonzero__(self): '''Return True if this node is not a leaf (it requires other nodes).''' return bool(self.require) def stem(self): '''Return True if this node is a stem (required by nothing).''' return not bool(self.satisfy) def disjoint(self): '''Return True if this node is both a leaf and a stem.''' return (not self) and self.stem() def __len__(self): '''Count the number of keys required by this node.''' return len(self.require) def __iter__(self): '''Iterate over the keys required by this node.''' return iter(self.require) def __str__(self): '''Return a human-readable string representation of the node.''' return '{%s}' % ', '.join(str(n) for n in self) def __repr__(self): '''Return a string representation of the node.''' return repr(self.require) class Graph(collections.defaultdict): '''A mutable mapping of objects to nodes in a dependency graph.''' def __init__(self, *args): super(Graph, self).__init__(Node, *args) def map(self, func): ''' Return a dictionary derived from mapping the supplied function onto each node in the graph. ''' return dict((k, func(n)) for k, n in self.items()) def copy(self): '''Return a copy of the graph.''' return Graph(self.map(lambda n: n.copy())) def reverse_copy(self): '''Return a copy of the graph with the edges reversed.''' return Graph(self.map(lambda n: n.reverse_copy())) def edges(self): '''Return an iterator over all of the edges in the graph.''' def outgoing_edges(rqr, node): if node.disjoint(): yield (rqr, None) else: for rqd in node: yield (rqr, rqd) return itertools.chain.from_iterable(outgoing_edges(*i) for i in six.iteritems(self)) def __delitem__(self, key): '''Delete the node given by the specified key from the graph.''' node = self[key] for src in node.required_by(): src_node = self[src] if key in src_node: src_node -= key return super(Graph, self).__delitem__(key) def __str__(self): '''Convert the graph to a human-readable string.''' pairs = ('%s: %s' % (str(k), str(v)) for k, v in six.iteritems(self)) return '{%s}' % ', '.join(pairs) @staticmethod def toposort(graph): ''' Return a topologically sorted iterator over a dependency graph. This is a destructive operation for the graph. ''' for iteration in xrange(len(graph)): for key, node in six.iteritems(graph): if not node: yield key del graph[key] break else: # There are nodes remaining, but none without # dependencies: a cycle raise CircularDependencyException(cycle=str(graph)) class Dependencies(object): '''Helper class for calculating a dependency graph.''' def __init__(self, edges=None): ''' Initialise, optionally with a list of edges, in the form of (requirer, required) tuples. ''' edges = edges or [] self._graph = Graph() for e in edges: self += e def __iadd__(self, edge): '''Add another edge, in the form of a (requirer, required) tuple.''' requirer, required = edge if required is None: # Just ensure the node is created by accessing the defaultdict self._graph[requirer] else: self._graph[required].required_by(requirer) self._graph[requirer].requires(required) return self def required_by(self, last): ''' List the keys that require the specified node. ''' if last not in self._graph: raise KeyError return self._graph[last].required_by() def __getitem__(self, last): ''' Return a partial dependency graph consisting of the specified node and all those that require it only. ''' if last not in self._graph: raise KeyError def get_edges(key): def requirer_edges(rqr): # Concatenate the dependency on the current node with the # recursive generated list return itertools.chain([(rqr, key)], get_edges(rqr)) # Get the edge list for each node that requires the current node edge_lists = itertools.imap(requirer_edges, self._graph[key].required_by()) # Combine the lists into one long list return itertools.chain.from_iterable(edge_lists) if self._graph[last].stem(): # Nothing requires this, so just add the node itself edges = [(last, None)] else: edges = get_edges(last) return Dependencies(edges) def __str__(self): ''' Return a human-readable string representation of the dependency graph ''' return str(self._graph) def __repr__(self): '''Return a string representation of the object.''' edge_reprs = (repr(e) for e in self._graph.edges()) return 'Dependencies([%s])' % ', '.join(edge_reprs) def graph(self, reverse=False): '''Return a copy of the underlying dependency graph.''' if reverse: return self._graph.reverse_copy() else: return self._graph.copy() def __iter__(self): '''Return a topologically sorted iterator''' return Graph.toposort(self.graph()) def __reversed__(self): '''Return a reverse topologically sorted iterator''' return Graph.toposort(self.graph(reverse=True))