deb-mistral/mistral/workbook/base.py
hardik 6b8f15385a Fail/Success/Pause transition message
Now user can provide customize message for
fail/success/pause transition.

Change-Id: I84b1fbc63aaf8186c81eea9c852f5b49db93f0ff
Implements: blueprint mistral-fail-transition-message
2016-06-01 14:44:44 +05:30

376 lines
11 KiB
Python

# Copyright 2015 - Mirantis, Inc.
# Copyright 2015 - StackStorm, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import jsonschema
import re
import six
from mistral import exceptions as exc
from mistral import expressions as expr
from mistral import utils
from mistral.workbook import types
CMD_PTRN = re.compile("^[\w\.]+[^=\(\s\"]*")
INLINE_YAQL = expr.INLINE_YAQL_REGEXP
_ALL_IN_BRACKETS = "\[.*\]\s*"
_ALL_IN_QUOTES = "\"[^\"]*\"\s*"
_ALL_IN_APOSTROPHES = "'[^']*'\s*"
_DIGITS = "\d+"
_TRUE = "true"
_FALSE = "false"
_NULL = "null"
ALL = (
_ALL_IN_QUOTES, _ALL_IN_APOSTROPHES, INLINE_YAQL,
_ALL_IN_BRACKETS, _TRUE, _FALSE, _NULL, _DIGITS
)
PARAMS_PTRN = re.compile("([-_\w]+)=(%s)" % "|".join(ALL))
def instantiate_spec(spec_cls, data):
"""Instantiates specification accounting for specification hierarchies.
:param spec_cls: Specification concrete or base class. In case if base
class or the hierarchy is provided this method relies on attributes
_polymorphic_key and _polymorphic_value in order to find a concrete
class that needs to be instantiated.
:param data: Raw specification data as a dictionary.
"""
if issubclass(spec_cls, BaseSpecList):
# Ignore polymorphic search for specification lists because
# it doesn't make sense for them.
return spec_cls(data)
if not hasattr(spec_cls, '_polymorphic_key'):
spec = spec_cls(data)
spec.validate_semantics()
return spec
key = spec_cls._polymorphic_key
if not isinstance(key, tuple):
key_name = key
key_default = None
else:
key_name = key[0]
key_default = key[1]
for cls in utils.iter_subclasses(spec_cls):
if not hasattr(cls, '_polymorphic_value'):
raise exc.DSLParsingException(
"Class '%s' is expected to have attribute '_polymorphic_value'"
" because it's a part of specification hierarchy inherited "
"from class '%s'." % (cls, spec_cls)
)
if cls._polymorphic_value == data.get(key_name, key_default):
spec = cls(data)
spec.validate_semantics()
return spec
raise exc.DSLParsingException(
'Failed to find a specification class to instantiate '
'[spec_cls=%s, data=%s]' % (spec_cls, data)
)
class BaseSpec(object):
"""Base class for all DSL specifications.
It represents a DSL entity such as workflow or task as a python object
providing more convenient API to analyse DSL than just working with raw
data in form of a dictionary. Specification classes also implement
all required validation logic by overriding instance method 'validate()'.
Note that the specification mechanism allows to have polymorphic entities
in DSL. For example, if we find it more convenient to have separate
specification classes for different types of workflow (i.e. 'direct' and
'reverse') we can do so. In this case, in order to instantiate them
correctly method 'instantiate_spec' must always be used where argument
'spec_cls' must be a root class of the specification hierarchy containing
class attribute '_polymorhpic_key' pointing to a key in raw data relying
on which we can find a concrete class. Concrete classes then must all have
attribute '_polymorhpic_value' corresponding to a value in a raw data.
Attribute '_polymorhpic_key' can be either a string or a tuple of size two
where the first value is a key name itself and the second value is a
default polymorphic value that must be used if raw data doesn't contain
a configured key at all. An example of this situation is when we don't
specify a workflow type in DSL. In this case, we assume it's 'direct'.
"""
# See http://json-schema.org
_schema = {
'type': 'object'
}
_meta_schema = {
'type': 'object'
}
_definitions = {}
_version = '1.0'
@classmethod
def get_schema(cls, includes=['meta', 'definitions']):
schema = copy.deepcopy(cls._schema)
schema['properties'] = utils.merge_dicts(
schema.get('properties', {}),
cls._meta_schema.get('properties', {}),
overwrite=False
)
if includes and 'meta' in includes:
schema['required'] = list(
set(schema.get('required', []) +
cls._meta_schema.get('required', []))
)
if includes and 'definitions' in includes:
schema['definitions'] = utils.merge_dicts(
schema.get('definitions', {}),
cls._definitions,
overwrite=False
)
return schema
def __init__(self, data):
self._data = data
self.validate_schema()
def validate_schema(self):
"""Validates DSL entity schema that this specification represents.
By default, this method just validate schema of DSL entity that this
specification represents using "_schema" class attribute.
Additionally, child classes may implement additional logic to validate
more specific things like YAQL expressions in their fields.
Note that this method is called before construction of specification
fields and validation logic should only rely on raw data provided as
a dictionary accessible through '_data' instance field.
"""
try:
jsonschema.validate(self._data, self.get_schema())
except jsonschema.ValidationError as e:
raise exc.InvalidModelException("Invalid DSL: %s" % e)
def validate_semantics(self):
"""Validates semantics of specification object.
Child classes may implement validation logic to check things like
integrity of corresponding data structure (e.g. task graph) or
other things that can't be expressed in JSON schema.
This method is called after specification has been built (i.e.
its initializer has finished it's work) so that validation logic
can rely on initialized specification fields.
"""
pass
def validate_yaql_expr(self, dsl_part):
if isinstance(dsl_part, six.string_types):
expr.validate(dsl_part)
elif isinstance(dsl_part, list):
for expression in dsl_part:
if isinstance(expression, six.string_types):
expr.validate(expression)
elif isinstance(dsl_part, dict):
for expression in dsl_part.values():
if isinstance(expression, six.string_types):
expr.validate(expression)
def _spec_property(self, prop_name, spec_cls):
prop_val = self._data.get(prop_name)
return instantiate_spec(spec_cls, prop_val) if prop_val else None
def _group_spec(self, spec_cls, *prop_names):
if not prop_names:
return None
data = {}
for prop_name in prop_names:
prop_val = self._data.get(prop_name)
if prop_val:
data[prop_name] = prop_val
return instantiate_spec(spec_cls, data)
def _inject_version(self, prop_names):
for prop_name in prop_names:
prop_data = self._data.get(prop_name)
if isinstance(prop_data, dict):
prop_data['version'] = self._version
def _as_dict(self, prop_name):
prop_val = self._data.get(prop_name)
if not prop_val:
return {}
if isinstance(prop_val, dict):
return prop_val
elif isinstance(prop_val, list):
result = {}
for t in prop_val:
result.update(t if isinstance(t, dict) else {t: ''})
return result
elif isinstance(prop_val, six.string_types):
return {prop_val: ''}
def _as_list_of_tuples(self, prop_name):
prop_val = self._data.get(prop_name)
if not prop_val:
return []
if isinstance(prop_val, six.string_types):
return [self._as_tuple(prop_val)]
return [self._as_tuple(item) for item in prop_val]
@staticmethod
def _as_tuple(val):
return list(val.items())[0] if isinstance(val, dict) else (val, '')
@staticmethod
def _parse_cmd_and_input(cmd_str):
# TODO(rakhmerov): Try to find a way with one expression.
cmd_matcher = CMD_PTRN.search(cmd_str)
if not cmd_matcher:
msg = "Invalid action/workflow task property: %s" % cmd_str
raise exc.InvalidModelException(msg)
cmd = cmd_matcher.group()
params = {}
for k, v in re.findall(PARAMS_PTRN, cmd_str):
# Remove embracing quotes.
v = v.strip()
if v[0] == '"' or v[0] == "'":
v = v[1:-1]
else:
try:
v = json.loads(v)
except Exception:
pass
params[k] = v
return cmd, params
def to_dict(self):
return self._data
def get_version(self):
return self._version
def __repr__(self):
return "%s %s" % (self.__class__.__name__, self.to_dict())
class BaseListSpec(BaseSpec):
item_class = None
_schema = {
"type": "object",
"properties": {
"version": types.VERSION
},
"additionalProperties": types.NONEMPTY_DICT,
"required": ["version"],
}
def __init__(self, data):
super(BaseListSpec, self).__init__(data)
self.items = []
for k, v in six.iteritems(data):
if k != 'version':
v['name'] = k
self._inject_version([k])
self.items.append(instantiate_spec(self.item_class, v))
def validate_schema(self):
super(BaseListSpec, self).validate_schema()
if len(self._data.keys()) < 2:
raise exc.InvalidModelException(
'At least one item must be in the list [data=%s].' %
self._data
)
def get_items(self):
return self.items
def __getitem__(self, idx):
return self.items[idx]
def __len__(self):
return len(self.items)
class BaseSpecList(object):
item_class = None
_version = '1.0'
def __init__(self, data):
self.items = {}
for k, v in six.iteritems(data):
if k != 'version':
v['name'] = k
v['version'] = self._version
self.items[k] = instantiate_spec(self.item_class, v)
def item_keys(self):
return self.items.keys()
def __iter__(self):
return six.itervalues(self.items)
def __getitem__(self, name):
return self.items.get(name)
def __len__(self):
return len(self.items)
def get(self, name):
return self.__getitem__(name)