# Copyright 2013-2015 DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Representation of Cassandra data types. These classes should make it simple for the library (and caller software) to deal with Cassandra-style Java class type names and CQL type specifiers, and convert between them cleanly. Parameterized types are fully supported in both flavors. Once you have the right Type object for the type you want, you can use it to serialize, deserialize, or retrieve the corresponding CQL or Cassandra type strings. """ # NOTE: # If/when the need arises for interpret types from CQL string literals in # different ways (for https://issues.apache.org/jira/browse/CASSANDRA-3799, # for example), these classes would be a good place to tack on # .from_cql_literal() and .as_cql_literal() classmethods (or whatever). from __future__ import absolute_import # to enable import io from stdlib from binascii import unhexlify import calendar from collections import namedtuple from decimal import Decimal import io import logging import re import socket import time import six from six.moves import range import sys from uuid import UUID import warnings from cassandra.marshal import (int8_pack, int8_unpack, int16_pack, int16_unpack, uint16_pack, uint16_unpack, uint32_pack, uint32_unpack, int32_pack, int32_unpack, int64_pack, int64_unpack, float_pack, float_unpack, double_pack, double_unpack, varint_pack, varint_unpack) from cassandra import util apache_cassandra_type_prefix = 'org.apache.cassandra.db.marshal.' log = logging.getLogger(__name__) if six.PY3: _number_types = frozenset((int, float)) long = int def _name_from_hex_string(encoded_name): bin_str = unhexlify(encoded_name) return bin_str.decode('ascii') else: _number_types = frozenset((int, long, float)) _name_from_hex_string = unhexlify def trim_if_startswith(s, prefix): if s.startswith(prefix): return s[len(prefix):] return s def unix_time_from_uuid1(u): msg = "'cassandra.cqltypes.unix_time_from_uuid1' has moved to 'cassandra.util'. This entry point will be removed in the next major version." warnings.warn(msg, DeprecationWarning) log.warning(msg) return util.unix_time_from_uuid1(u) def datetime_from_timestamp(timestamp): msg = "'cassandra.cqltypes.datetime_from_timestamp' has moved to 'cassandra.util'. This entry point will be removed in the next major version." warnings.warn(msg, DeprecationWarning) log.warning(msg) return util.datetime_from_timestamp(timestamp) _casstypes = {} class CassandraTypeType(type): """ The CassandraType objects in this module will normally be used directly, rather than through instances of those types. They can be instantiated, of course, but the type information is what this driver mainly needs. This metaclass registers CassandraType classes in the global by-cassandra-typename and by-cql-typename registries, unless their class name starts with an underscore. """ def __new__(metacls, name, bases, dct): dct.setdefault('cassname', name) cls = type.__new__(metacls, name, bases, dct) if not name.startswith('_'): _casstypes[name] = cls return cls casstype_scanner = re.Scanner(( (r'[()]', lambda s, t: t), (r'[a-zA-Z0-9_.:=>]+', lambda s, t: t), (r'[\s,]', None), )) def lookup_casstype_simple(casstype): """ Given a Cassandra type name (either fully distinguished or not), hand back the CassandraType class responsible for it. If a name is not recognized, a custom _UnrecognizedType subclass will be created for it. This function does not handle complex types (so no type parameters-- nothing with parentheses). Use lookup_casstype() instead if you might need that. """ shortname = trim_if_startswith(casstype, apache_cassandra_type_prefix) try: typeclass = _casstypes[shortname] except KeyError: typeclass = mkUnrecognizedType(casstype) return typeclass def parse_casstype_args(typestring): tokens, remainder = casstype_scanner.scan(typestring) if remainder: raise ValueError("weird characters %r at end" % remainder) # use a stack of (types, names) lists args = [([], [])] for tok in tokens: if tok == '(': args.append(([], [])) elif tok == ')': types, names = args.pop() prev_types, prev_names = args[-1] prev_types[-1] = prev_types[-1].apply_parameters(types, names) else: types, names = args[-1] parts = re.split(':|=>', tok) tok = parts.pop() if parts: names.append(parts[0]) else: names.append(None) ctype = lookup_casstype_simple(tok) types.append(ctype) # return the first (outer) type, which will have all parameters applied return args[0][0][0] def lookup_casstype(casstype): """ Given a Cassandra type as a string (possibly including parameters), hand back the CassandraType class responsible for it. If a name is not recognized, a custom _UnrecognizedType subclass will be created for it. Example: >>> lookup_casstype('org.apache.cassandra.db.marshal.MapType(org.apache.cassandra.db.marshal.UTF8Type,org.apache.cassandra.db.marshal.Int32Type)') """ if isinstance(casstype, (CassandraType, CassandraTypeType)): return casstype try: return parse_casstype_args(casstype) except (ValueError, AssertionError, IndexError) as e: raise ValueError("Don't know how to parse type string %r: %s" % (casstype, e)) class EmptyValue(object): """ See _CassandraType.support_empty_values """ def __str__(self): return "EMPTY" __repr__ = __str__ EMPTY = EmptyValue() @six.add_metaclass(CassandraTypeType) class _CassandraType(object): subtypes = () num_subtypes = 0 empty_binary_ok = False support_empty_values = False """ Back in the Thrift days, empty strings were used for "null" values of all types, including non-string types. For most users, an empty string value in an int column is the same as being null/not present, so the driver normally returns None in this case. (For string-like types, it *will* return an empty string by default instead of None.) To avoid this behavior, set this to :const:`True`. Instead of returning None for empty string values, the EMPTY singleton (an instance of EmptyValue) will be returned. """ def __init__(self, val): self.val = self.validate(val) def __repr__(self): return '<%s( %r )>' % (self.cql_parameterized_type(), self.val) @staticmethod def validate(val): """ Called to transform an input value into one of a suitable type for this class. As an example, the BooleanType class uses this to convert an incoming value to True or False. """ return val @classmethod def from_binary(cls, byts, protocol_version): """ Deserialize a bytestring into a value. See the deserialize() method for more information. This method differs in that if None or the empty string is passed in, None may be returned. """ if byts is None: return None elif len(byts) == 0 and not cls.empty_binary_ok: return EMPTY if cls.support_empty_values else None return cls.deserialize(byts, protocol_version) @classmethod def to_binary(cls, val, protocol_version): """ Serialize a value into a bytestring. See the serialize() method for more information. This method differs in that if None is passed in, the result is the empty string. """ return b'' if val is None else cls.serialize(val, protocol_version) @staticmethod def deserialize(byts, protocol_version): """ Given a bytestring, deserialize into a value according to the protocol for this type. Note that this does not create a new instance of this class; it merely gives back a value that would be appropriate to go inside an instance of this class. """ return byts @staticmethod def serialize(val, protocol_version): """ Given a value appropriate for this class, serialize it according to the protocol for this type and return the corresponding bytestring. """ return val @classmethod def cass_parameterized_type_with(cls, subtypes, full=False): """ Return the name of this type as it would be expressed by Cassandra, optionally fully qualified. If subtypes is not None, it is expected to be a list of other CassandraType subclasses, and the output string includes the Cassandra names for those subclasses as well, as parameters to this one. Example: >>> LongType.cass_parameterized_type_with(()) 'LongType' >>> LongType.cass_parameterized_type_with((), full=True) 'org.apache.cassandra.db.marshal.LongType' >>> SetType.cass_parameterized_type_with([DecimalType], full=True) 'org.apache.cassandra.db.marshal.SetType(org.apache.cassandra.db.marshal.DecimalType)' """ cname = cls.cassname if full and '.' not in cname: cname = apache_cassandra_type_prefix + cname if not subtypes: return cname sublist = ', '.join(styp.cass_parameterized_type(full=full) for styp in subtypes) return '%s(%s)' % (cname, sublist) @classmethod def apply_parameters(cls, subtypes, names=None): """ Given a set of other CassandraTypes, create a new subtype of this type using them as parameters. This is how composite types are constructed. >>> MapType.apply_parameters(DateType, BooleanType) `subtypes` will be a sequence of CassandraTypes. If provided, `names` will be an equally long sequence of column names or Nones. """ if cls.num_subtypes != 'UNKNOWN' and len(subtypes) != cls.num_subtypes: raise ValueError("%s types require %d subtypes (%d given)" % (cls.typename, cls.num_subtypes, len(subtypes))) newname = cls.cass_parameterized_type_with(subtypes) if six.PY2 and isinstance(newname, unicode): newname = newname.encode('utf-8') return type(newname, (cls,), {'subtypes': subtypes, 'cassname': cls.cassname, 'fieldnames': names}) @classmethod def cql_parameterized_type(cls): """ Return a CQL type specifier for this type. If this type has parameters, they are included in standard CQL <> notation. """ if not cls.subtypes: return cls.typename return '%s<%s>' % (cls.typename, ', '.join(styp.cql_parameterized_type() for styp in cls.subtypes)) @classmethod def cass_parameterized_type(cls, full=False): """ Return a Cassandra type specifier for this type. If this type has parameters, they are included in the standard () notation. """ return cls.cass_parameterized_type_with(cls.subtypes, full=full) # it's initially named with a _ to avoid registering it as a real type, but # client programs may want to use the name still for isinstance(), etc CassandraType = _CassandraType class _UnrecognizedType(_CassandraType): num_subtypes = 'UNKNOWN' if six.PY3: def mkUnrecognizedType(casstypename): return CassandraTypeType(casstypename, (_UnrecognizedType,), {'typename': "'%s'" % casstypename}) else: def mkUnrecognizedType(casstypename): # noqa return CassandraTypeType(casstypename.encode('utf8'), (_UnrecognizedType,), {'typename': "'%s'" % casstypename}) class BytesType(_CassandraType): typename = 'blob' empty_binary_ok = True @staticmethod def validate(val): return bytearray(val) @staticmethod def serialize(val, protocol_version): return six.binary_type(val) class DecimalType(_CassandraType): typename = 'decimal' @staticmethod def validate(val): return Decimal(val) @staticmethod def deserialize(byts, protocol_version): scale = int32_unpack(byts[:4]) unscaled = varint_unpack(byts[4:]) return Decimal('%de%d' % (unscaled, -scale)) @staticmethod def serialize(dec, protocol_version): try: sign, digits, exponent = dec.as_tuple() except AttributeError: raise TypeError("Non-Decimal type received for Decimal value") unscaled = int(''.join([str(digit) for digit in digits])) if sign: unscaled *= -1 scale = int32_pack(-exponent) unscaled = varint_pack(unscaled) return scale + unscaled class UUIDType(_CassandraType): typename = 'uuid' @staticmethod def deserialize(byts, protocol_version): return UUID(bytes=byts) @staticmethod def serialize(uuid, protocol_version): try: return uuid.bytes except AttributeError: raise TypeError("Got a non-UUID object for a UUID value") class BooleanType(_CassandraType): typename = 'boolean' @staticmethod def validate(val): return bool(val) @staticmethod def deserialize(byts, protocol_version): return bool(int8_unpack(byts)) @staticmethod def serialize(truth, protocol_version): return int8_pack(truth) class ByteType(_CassandraType): typename = 'tinyint' @staticmethod def deserialize(byts, protocol_version): return int8_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int8_pack(byts) if six.PY2: class AsciiType(_CassandraType): typename = 'ascii' empty_binary_ok = True else: class AsciiType(_CassandraType): typename = 'ascii' empty_binary_ok = True @staticmethod def deserialize(byts, protocol_version): return byts.decode('ascii') @staticmethod def serialize(var, protocol_version): try: return var.encode('ascii') except UnicodeDecodeError: return var class FloatType(_CassandraType): typename = 'float' @staticmethod def deserialize(byts, protocol_version): return float_unpack(byts) @staticmethod def serialize(byts, protocol_version): return float_pack(byts) class DoubleType(_CassandraType): typename = 'double' @staticmethod def deserialize(byts, protocol_version): return double_unpack(byts) @staticmethod def serialize(byts, protocol_version): return double_pack(byts) class LongType(_CassandraType): typename = 'bigint' @staticmethod def deserialize(byts, protocol_version): return int64_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int64_pack(byts) class Int32Type(_CassandraType): typename = 'int' @staticmethod def deserialize(byts, protocol_version): return int32_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int32_pack(byts) class IntegerType(_CassandraType): typename = 'varint' @staticmethod def deserialize(byts, protocol_version): return varint_unpack(byts) @staticmethod def serialize(byts, protocol_version): return varint_pack(byts) class InetAddressType(_CassandraType): typename = 'inet' @staticmethod def deserialize(byts, protocol_version): if len(byts) == 16: return util.inet_ntop(socket.AF_INET6, byts) else: # util.inet_pton could also handle, but this is faster # since we've already determined the AF return socket.inet_ntoa(byts) @staticmethod def serialize(addr, protocol_version): if ':' in addr: return util.inet_pton(socket.AF_INET6, addr) else: # util.inet_pton could also handle, but this is faster # since we've already determined the AF return socket.inet_aton(addr) class CounterColumnType(LongType): typename = 'counter' cql_timestamp_formats = ( '%Y-%m-%d %H:%M', '%Y-%m-%d %H:%M:%S', '%Y-%m-%dT%H:%M', '%Y-%m-%dT%H:%M:%S', '%Y-%m-%d' ) _have_warned_about_timestamps = False class DateType(_CassandraType): typename = 'timestamp' @classmethod def validate(cls, val): if isinstance(val, six.string_types): val = cls.interpret_datestring(val) return val @staticmethod def interpret_datestring(val): if val[-5] in ('+', '-'): offset = (int(val[-4:-2]) * 3600 + int(val[-2:]) * 60) * int(val[-5] + '1') val = val[:-5] else: offset = -time.timezone for tformat in cql_timestamp_formats: try: tval = time.strptime(val, tformat) except ValueError: continue # scale seconds to millis for the raw value return (calendar.timegm(tval) + offset) * 1e3 else: raise ValueError("can't interpret %r as a date" % (val,)) def my_timestamp(self): return self.val @staticmethod def deserialize(byts, protocol_version): timestamp = int64_unpack(byts) / 1000.0 return util.datetime_from_timestamp(timestamp) @staticmethod def serialize(v, protocol_version): try: # v is datetime timestamp_seconds = calendar.timegm(v.utctimetuple()) timestamp = timestamp_seconds * 1e3 + getattr(v, 'microsecond', 0) / 1e3 except AttributeError: # Ints and floats are valid timestamps too if type(v) not in _number_types: raise TypeError('DateType arguments must be a datetime or timestamp') timestamp = v return int64_pack(long(timestamp)) class TimestampType(DateType): pass class TimeUUIDType(DateType): typename = 'timeuuid' def my_timestamp(self): return unix_time_from_uuid1(self.val) @staticmethod def deserialize(byts, protocol_version): return UUID(bytes=byts) @staticmethod def serialize(timeuuid, protocol_version): try: return timeuuid.bytes except AttributeError: raise TypeError("Got a non-UUID object for a UUID value") class SimpleDateType(_CassandraType): typename = 'date' date_format = "%Y-%m-%d" # Values of the 'date'` type are encoded as 32-bit unsigned integers # representing a number of days with epoch (January 1st, 1970) at the center of the # range (2^31). EPOCH_OFFSET_DAYS = 2 ** 31 @classmethod def validate(cls, val): if not isinstance(val, util.Date): val = util.Date(val) return val @staticmethod def deserialize(byts, protocol_version): days = uint32_unpack(byts) - SimpleDateType.EPOCH_OFFSET_DAYS return util.Date(days) @staticmethod def serialize(val, protocol_version): try: days = val.days_from_epoch except AttributeError: days = util.Date(val).days_from_epoch return uint32_pack(days + SimpleDateType.EPOCH_OFFSET_DAYS) class ShortType(_CassandraType): typename = 'smallint' @staticmethod def deserialize(byts, protocol_version): return int16_unpack(byts) @staticmethod def serialize(byts, protocol_version): return int16_pack(byts) class TimeType(_CassandraType): typename = 'time' @classmethod def validate(cls, val): if not isinstance(val, util.Time): val = util.Time(val) return val @staticmethod def deserialize(byts, protocol_version): return util.Time(int64_unpack(byts)) @staticmethod def serialize(val, protocol_version): try: nano = val.nanosecond_time except AttributeError: nano = util.Time(val).nanosecond_time return int64_pack(nano) class UTF8Type(_CassandraType): typename = 'text' empty_binary_ok = True @staticmethod def deserialize(byts, protocol_version): return byts.decode('utf8') @staticmethod def serialize(ustr, protocol_version): try: return ustr.encode('utf-8') except UnicodeDecodeError: # already utf-8 return ustr class VarcharType(UTF8Type): typename = 'varchar' class _ParameterizedType(_CassandraType): def __init__(self, val): if not self.subtypes: raise ValueError("%s type with no parameters can't be instantiated" % (self.typename,)) _CassandraType.__init__(self, val) @classmethod def deserialize(cls, byts, protocol_version): if not cls.subtypes: raise NotImplementedError("can't deserialize unparameterized %s" % cls.typename) return cls.deserialize_safe(byts, protocol_version) @classmethod def serialize(cls, val, protocol_version): if not cls.subtypes: raise NotImplementedError("can't serialize unparameterized %s" % cls.typename) return cls.serialize_safe(val, protocol_version) class _SimpleParameterizedType(_ParameterizedType): @classmethod def validate(cls, val): subtype, = cls.subtypes return cls.adapter([subtype.validate(subval) for subval in val]) @classmethod def deserialize_safe(cls, byts, protocol_version): subtype, = cls.subtypes if protocol_version >= 3: unpack = int32_unpack length = 4 else: unpack = uint16_unpack length = 2 numelements = unpack(byts[:length]) p = length result = [] for _ in range(numelements): itemlen = unpack(byts[p:p + length]) p += length item = byts[p:p + itemlen] p += itemlen result.append(subtype.from_binary(item, protocol_version)) return cls.adapter(result) @classmethod def serialize_safe(cls, items, protocol_version): if isinstance(items, six.string_types): raise TypeError("Received a string for a type that expects a sequence") subtype, = cls.subtypes pack = int32_pack if protocol_version >= 3 else uint16_pack buf = io.BytesIO() buf.write(pack(len(items))) for item in items: itembytes = subtype.to_binary(item, protocol_version) buf.write(pack(len(itembytes))) buf.write(itembytes) return buf.getvalue() class ListType(_SimpleParameterizedType): typename = 'list' num_subtypes = 1 adapter = list class SetType(_SimpleParameterizedType): typename = 'set' num_subtypes = 1 adapter = util.sortedset class MapType(_ParameterizedType): typename = 'map' num_subtypes = 2 @classmethod def validate(cls, val): key_type, value_type = cls.subtypes return dict((key_type.validate(k), value_type.validate(v)) for (k, v) in six.iteritems(val)) @classmethod def deserialize_safe(cls, byts, protocol_version): key_type, value_type = cls.subtypes if protocol_version >= 3: unpack = int32_unpack length = 4 else: unpack = uint16_unpack length = 2 numelements = unpack(byts[:length]) p = length themap = util.OrderedMapSerializedKey(key_type, protocol_version) for _ in range(numelements): key_len = unpack(byts[p:p + length]) p += length keybytes = byts[p:p + key_len] p += key_len val_len = unpack(byts[p:p + length]) p += length valbytes = byts[p:p + val_len] p += val_len key = key_type.from_binary(keybytes, protocol_version) val = value_type.from_binary(valbytes, protocol_version) themap._insert_unchecked(key, keybytes, val) return themap @classmethod def serialize_safe(cls, themap, protocol_version): key_type, value_type = cls.subtypes pack = int32_pack if protocol_version >= 3 else uint16_pack buf = io.BytesIO() buf.write(pack(len(themap))) try: items = six.iteritems(themap) except AttributeError: raise TypeError("Got a non-map object for a map value") for key, val in items: keybytes = key_type.to_binary(key, protocol_version) valbytes = value_type.to_binary(val, protocol_version) buf.write(pack(len(keybytes))) buf.write(keybytes) buf.write(pack(len(valbytes))) buf.write(valbytes) return buf.getvalue() class TupleType(_ParameterizedType): typename = 'tuple' num_subtypes = 'UNKNOWN' @classmethod def deserialize_safe(cls, byts, protocol_version): proto_version = max(3, protocol_version) p = 0 values = [] for col_type in cls.subtypes: if p == len(byts): break itemlen = int32_unpack(byts[p:p + 4]) p += 4 if itemlen >= 0: item = byts[p:p + itemlen] p += itemlen else: item = None # collections inside UDTs are always encoded with at least the # version 3 format values.append(col_type.from_binary(item, proto_version)) if len(values) < len(cls.subtypes): nones = [None] * (len(cls.subtypes) - len(values)) values = values + nones return tuple(values) @classmethod def serialize_safe(cls, val, protocol_version): if len(val) > len(cls.subtypes): raise ValueError("Expected %d items in a tuple, but got %d: %s" % (len(cls.subtypes), len(val), val)) proto_version = max(3, protocol_version) buf = io.BytesIO() for item, subtype in zip(val, cls.subtypes): if item is not None: packed_item = subtype.to_binary(item, proto_version) buf.write(int32_pack(len(packed_item))) buf.write(packed_item) else: buf.write(int32_pack(-1)) return buf.getvalue() @classmethod def cql_parameterized_type(cls): subtypes_string = ', '.join(sub.cql_parameterized_type() for sub in cls.subtypes) return 'frozen>' % (subtypes_string,) class UserType(TupleType): typename = "'org.apache.cassandra.db.marshal.UserType'" _cache = {} _module = sys.modules[__name__] @classmethod def make_udt_class(cls, keyspace, udt_name, names_and_types, mapped_class): if six.PY2 and isinstance(udt_name, unicode): udt_name = udt_name.encode('utf-8') try: return cls._cache[(keyspace, udt_name)] except KeyError: field_names, types = zip(*names_and_types) instance = type(udt_name, (cls,), {'subtypes': types, 'cassname': cls.cassname, 'typename': udt_name, 'fieldnames': field_names, 'keyspace': keyspace, 'mapped_class': mapped_class, 'tuple_type': cls._make_registered_udt_namedtuple(keyspace, udt_name, field_names)}) cls._cache[(keyspace, udt_name)] = instance return instance @classmethod def evict_udt_class(cls, keyspace, udt_name): if six.PY2 and isinstance(udt_name, unicode): udt_name = udt_name.encode('utf-8') try: del cls._cache[(keyspace, udt_name)] except KeyError: pass @classmethod def apply_parameters(cls, subtypes, names): keyspace = subtypes[0] udt_name = _name_from_hex_string(subtypes[1].cassname) field_names = [_name_from_hex_string(encoded_name) for encoded_name in names[2:]] assert len(field_names) == len(subtypes[2:]) return type(udt_name, (cls,), {'subtypes': subtypes[2:], 'cassname': cls.cassname, 'typename': udt_name, 'fieldnames': field_names, 'keyspace': keyspace, 'mapped_class': None, 'tuple_type': namedtuple(udt_name, field_names)}) @classmethod def cql_parameterized_type(cls): return "frozen<%s>" % (cls.typename,) @classmethod def deserialize_safe(cls, byts, protocol_version): proto_version = max(3, protocol_version) p = 0 values = [] for col_type in cls.subtypes: if p == len(byts): break itemlen = int32_unpack(byts[p:p + 4]) p += 4 if itemlen >= 0: item = byts[p:p + itemlen] p += itemlen else: item = None # collections inside UDTs are always encoded with at least the # version 3 format values.append(col_type.from_binary(item, proto_version)) if len(values) < len(cls.subtypes): nones = [None] * (len(cls.subtypes) - len(values)) values = values + nones if cls.mapped_class: return cls.mapped_class(**dict(zip(cls.fieldnames, values))) else: return cls.tuple_type(*values) @classmethod def serialize_safe(cls, val, protocol_version): proto_version = max(3, protocol_version) buf = io.BytesIO() for fieldname, subtype in zip(cls.fieldnames, cls.subtypes): item = getattr(val, fieldname) if item is not None: packed_item = subtype.to_binary(getattr(val, fieldname), proto_version) buf.write(int32_pack(len(packed_item))) buf.write(packed_item) else: buf.write(int32_pack(-1)) return buf.getvalue() @classmethod def _make_registered_udt_namedtuple(cls, keyspace, name, field_names): # this is required to make the type resolvable via this module... # required when unregistered udts are pickled for use as keys in # util.OrderedMap qualified_name = "%s_%s" % (keyspace, name) nt = getattr(cls._module, qualified_name, None) if not nt: nt = namedtuple(qualified_name, field_names) setattr(cls._module, qualified_name, nt) return nt class CompositeType(_ParameterizedType): typename = "'org.apache.cassandra.db.marshal.CompositeType'" num_subtypes = 'UNKNOWN' @classmethod def cql_parameterized_type(cls): """ There is no CQL notation for Composites, so we override this. """ typestring = cls.cass_parameterized_type(full=True) return "'%s'" % (typestring,) @classmethod def deserialize_safe(cls, byts, protocol_version): result = [] for subtype in cls.subtypes: if not byts: # CompositeType can have missing elements at the end break element_length = uint16_unpack(byts[:2]) element = byts[2:2 + element_length] # skip element length, element, and the EOC (one byte) byts = byts[2 + element_length + 1:] result.append(subtype.from_binary(element, protocol_version)) return tuple(result) class DynamicCompositeType(CompositeType): typename = "'org.apache.cassandra.db.marshal.DynamicCompositeType'" class ColumnToCollectionType(_ParameterizedType): """ This class only really exists so that we can cleanly evaluate types when Cassandra includes this. We don't actually need or want the extra information. """ typename = "'org.apache.cassandra.db.marshal.ColumnToCollectionType'" num_subtypes = 'UNKNOWN' class ReversedType(_ParameterizedType): typename = "'org.apache.cassandra.db.marshal.ReversedType'" num_subtypes = 1 @classmethod def deserialize_safe(cls, byts, protocol_version): subtype, = cls.subtypes return subtype.from_binary(byts) @classmethod def serialize_safe(cls, val, protocol_version): subtype, = cls.subtypes return subtype.to_binary(val, protocol_version) class FrozenType(_ParameterizedType): typename = "frozen" num_subtypes = 1 @classmethod def deserialize_safe(cls, byts, protocol_version): subtype, = cls.subtypes return subtype.from_binary(byts) @classmethod def serialize_safe(cls, val, protocol_version): subtype, = cls.subtypes return subtype.to_binary(val, protocol_version) def is_counter_type(t): if isinstance(t, six.string_types): t = lookup_casstype(t) return issubclass(t, CounterColumnType) def cql_typename(casstypename): """ Translate a Cassandra-style type specifier (optionally-fully-distinguished Java class names for data types, along with optional parameters) into a CQL-style type specifier. >>> cql_typename('DateType') 'timestamp' >>> cql_typename('org.apache.cassandra.db.marshal.ListType(IntegerType)') 'list' """ return lookup_casstype(casstypename).cql_parameterized_type()