Files
deb-python-eventlet/eventlet/greenio/base.py
Jakub Stasiak c315ee86da greenio: Remove sendall-like semantincs from GreenSocket.send
When a socket timeout was set the sendall-like semantics was resulting
in losing information about sent data and raising socket.timeout exception.

The previous GreenSocket.send() implementation used to call fd.send() in a
loop until all data was sent. The issue would manifest if at least one
fd.send() call succeeded and was followed by a fd.send() call that would
block and a trampoline that timed out. The client code would see
socket.timeout being raised and would rightfully assume that no data was
sent which would be incorrect.

Discussed at https://github.com/eventlet/eventlet/issues/260.

The original commit[1] has been reverted because it broke the
test_multiple_readers test. After some debugging I believe I more or
less know what's going on:

The test uses sendall() which calls send() in a loop if send() reports
only part of the data sent. Previously sendall() would call send() only
one anyway because send() had sendall-like semantics; send has an
internal loop on its own and, previously, it'd call the underlying
socket object send() and, in case of partial write, call trampoline
mechanism which would switch to another greenthread ready to run.

After the change partial writes no longer result in trampoline mechanism
being called which means that during this test it's likely that
sendall() doesn't yield control to the hub even once. Similarly the
current recv() implementation - it attemps to read from a socket first
and only yields control to the hub if there's nothing to read at the
moment; when one of the readers obtained control it's likely it'd manage
to read all the data from the socket without yielding control to the hub
and letting the other reader receive any data.

The test changes the sending code so that it not only yields to the hub
but also waits a bit so that both the readers have to yield to the hub
when trying to read and there's no data available; the tests confirmed
this lets both the readers receive some data from the socket which is
the purpose of the test.

[1] 4656eadfa5
2016-01-23 02:02:59 +01:00

481 lines
17 KiB
Python

import errno
import os
from socket import socket as _original_socket
import socket
import sys
import time
import warnings
from eventlet.support import get_errno, six
from eventlet.hubs import trampoline, notify_opened, IOClosed
__all__ = [
'GreenSocket', '_GLOBAL_DEFAULT_TIMEOUT', 'set_nonblocking',
'SOCKET_CLOSED', 'CONNECT_ERR', 'CONNECT_SUCCESS',
'shutdown_safe', 'SSL',
]
BUFFER_SIZE = 4096
CONNECT_ERR = set((errno.EINPROGRESS, errno.EALREADY, errno.EWOULDBLOCK))
CONNECT_SUCCESS = set((0, errno.EISCONN))
if sys.platform[:3] == "win":
CONNECT_ERR.add(errno.WSAEINVAL) # Bug 67
if six.PY2:
_python2_fileobject = socket._fileobject
def socket_connect(descriptor, address):
"""
Attempts to connect to the address, returns the descriptor if it succeeds,
returns None if it needs to trampoline, and raises any exceptions.
"""
err = descriptor.connect_ex(address)
if err in CONNECT_ERR:
return None
if err not in CONNECT_SUCCESS:
raise socket.error(err, errno.errorcode[err])
return descriptor
def socket_checkerr(descriptor):
err = descriptor.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
if err not in CONNECT_SUCCESS:
raise socket.error(err, errno.errorcode[err])
def socket_accept(descriptor):
"""
Attempts to accept() on the descriptor, returns a client,address tuple
if it succeeds; returns None if it needs to trampoline, and raises
any exceptions.
"""
try:
return descriptor.accept()
except socket.error as e:
if get_errno(e) == errno.EWOULDBLOCK:
return None
raise
if sys.platform[:3] == "win":
# winsock sometimes throws ENOTCONN
SOCKET_BLOCKING = set((errno.EAGAIN, errno.EWOULDBLOCK,))
SOCKET_CLOSED = set((errno.ECONNRESET, errno.ENOTCONN, errno.ESHUTDOWN))
else:
# oddly, on linux/darwin, an unconnected socket is expected to block,
# so we treat ENOTCONN the same as EWOULDBLOCK
SOCKET_BLOCKING = set((errno.EAGAIN, errno.EWOULDBLOCK, errno.ENOTCONN))
SOCKET_CLOSED = set((errno.ECONNRESET, errno.ESHUTDOWN, errno.EPIPE))
def set_nonblocking(fd):
"""
Sets the descriptor to be nonblocking. Works on many file-like
objects as well as sockets. Only sockets can be nonblocking on
Windows, however.
"""
try:
setblocking = fd.setblocking
except AttributeError:
# fd has no setblocking() method. It could be that this version of
# Python predates socket.setblocking(). In that case, we can still set
# the flag "by hand" on the underlying OS fileno using the fcntl
# module.
try:
import fcntl
except ImportError:
# Whoops, Windows has no fcntl module. This might not be a socket
# at all, but rather a file-like object with no setblocking()
# method. In particular, on Windows, pipes don't support
# non-blocking I/O and therefore don't have that method. Which
# means fcntl wouldn't help even if we could load it.
raise NotImplementedError("set_nonblocking() on a file object "
"with no setblocking() method "
"(Windows pipes don't support non-blocking I/O)")
# We managed to import fcntl.
fileno = fd.fileno()
orig_flags = fcntl.fcntl(fileno, fcntl.F_GETFL)
new_flags = orig_flags | os.O_NONBLOCK
if new_flags != orig_flags:
fcntl.fcntl(fileno, fcntl.F_SETFL, new_flags)
else:
# socket supports setblocking()
setblocking(0)
try:
from socket import _GLOBAL_DEFAULT_TIMEOUT
except ImportError:
_GLOBAL_DEFAULT_TIMEOUT = object()
class GreenSocket(object):
"""
Green version of socket.socket class, that is intended to be 100%
API-compatible.
It also recognizes the keyword parameter, 'set_nonblocking=True'.
Pass False to indicate that socket is already in non-blocking mode
to save syscalls.
"""
# This placeholder is to prevent __getattr__ from creating an infinite call loop
fd = None
def __init__(self, family_or_realsock=socket.AF_INET, *args, **kwargs):
should_set_nonblocking = kwargs.pop('set_nonblocking', True)
if isinstance(family_or_realsock, six.integer_types):
fd = _original_socket(family_or_realsock, *args, **kwargs)
# Notify the hub that this is a newly-opened socket.
notify_opened(fd.fileno())
else:
fd = family_or_realsock
# import timeout from other socket, if it was there
try:
self._timeout = fd.gettimeout() or socket.getdefaulttimeout()
except AttributeError:
self._timeout = socket.getdefaulttimeout()
if should_set_nonblocking:
set_nonblocking(fd)
self.fd = fd
# when client calls setblocking(0) or settimeout(0) the socket must
# act non-blocking
self.act_non_blocking = False
# Copy some attributes from underlying real socket.
# This is the easiest way that i found to fix
# https://bitbucket.org/eventlet/eventlet/issue/136
# Only `getsockopt` is required to fix that issue, others
# are just premature optimization to save __getattr__ call.
self.bind = fd.bind
self.close = fd.close
self.fileno = fd.fileno
self.getsockname = fd.getsockname
self.getsockopt = fd.getsockopt
self.listen = fd.listen
self.setsockopt = fd.setsockopt
self.shutdown = fd.shutdown
self._closed = False
@property
def _sock(self):
return self
if six.PY3:
def _get_io_refs(self):
return self.fd._io_refs
def _set_io_refs(self, value):
self.fd._io_refs = value
_io_refs = property(_get_io_refs, _set_io_refs)
# Forward unknown attributes to fd, cache the value for future use.
# I do not see any simple attribute which could be changed
# so caching everything in self is fine.
# If we find such attributes - only attributes having __get__ might be cached.
# For now - I do not want to complicate it.
def __getattr__(self, name):
if self.fd is None:
raise AttributeError(name)
attr = getattr(self.fd, name)
setattr(self, name, attr)
return attr
def _trampoline(self, fd, read=False, write=False, timeout=None, timeout_exc=None):
""" We need to trampoline via the event hub.
We catch any signal back from the hub indicating that the operation we
were waiting on was associated with a filehandle that's since been
invalidated.
"""
if self._closed:
# If we did any logging, alerting to a second trampoline attempt on a closed
# socket here would be useful.
raise IOClosed()
try:
return trampoline(fd, read=read, write=write, timeout=timeout,
timeout_exc=timeout_exc,
mark_as_closed=self._mark_as_closed)
except IOClosed:
# This socket's been obsoleted. De-fang it.
self._mark_as_closed()
raise
def accept(self):
if self.act_non_blocking:
return self.fd.accept()
fd = self.fd
while True:
res = socket_accept(fd)
if res is not None:
client, addr = res
set_nonblocking(client)
return type(self)(client), addr
self._trampoline(fd, read=True, timeout=self.gettimeout(),
timeout_exc=socket.timeout("timed out"))
def _mark_as_closed(self):
""" Mark this socket as being closed """
self._closed = True
def __del__(self):
# This is in case self.close is not assigned yet (currently the constructor does it)
close = getattr(self, 'close', None)
if close is not None:
close()
def connect(self, address):
if self.act_non_blocking:
return self.fd.connect(address)
fd = self.fd
if self.gettimeout() is None:
while not socket_connect(fd, address):
try:
self._trampoline(fd, write=True)
except IOClosed:
raise socket.error(errno.EBADFD)
socket_checkerr(fd)
else:
end = time.time() + self.gettimeout()
while True:
if socket_connect(fd, address):
return
if time.time() >= end:
raise socket.timeout("timed out")
try:
self._trampoline(fd, write=True, timeout=end - time.time(),
timeout_exc=socket.timeout("timed out"))
except IOClosed:
# ... we need some workable errno here.
raise socket.error(errno.EBADFD)
socket_checkerr(fd)
def connect_ex(self, address):
if self.act_non_blocking:
return self.fd.connect_ex(address)
fd = self.fd
if self.gettimeout() is None:
while not socket_connect(fd, address):
try:
self._trampoline(fd, write=True)
socket_checkerr(fd)
except socket.error as ex:
return get_errno(ex)
except IOClosed:
return errno.EBADFD
else:
end = time.time() + self.gettimeout()
while True:
try:
if socket_connect(fd, address):
return 0
if time.time() >= end:
raise socket.timeout(errno.EAGAIN)
self._trampoline(fd, write=True, timeout=end - time.time(),
timeout_exc=socket.timeout(errno.EAGAIN))
socket_checkerr(fd)
except socket.error as ex:
return get_errno(ex)
except IOClosed:
return errno.EBADFD
def dup(self, *args, **kw):
sock = self.fd.dup(*args, **kw)
newsock = type(self)(sock, set_nonblocking=False)
newsock.settimeout(self.gettimeout())
return newsock
if six.PY3:
def makefile(self, *args, **kwargs):
return _original_socket.makefile(self, *args, **kwargs)
else:
def makefile(self, *args, **kwargs):
dupped = self.dup()
res = _python2_fileobject(dupped, *args, **kwargs)
if hasattr(dupped, "_drop"):
dupped._drop()
return res
def makeGreenFile(self, *args, **kw):
warnings.warn("makeGreenFile has been deprecated, please use "
"makefile instead", DeprecationWarning, stacklevel=2)
return self.makefile(*args, **kw)
def _read_trampoline(self):
self._trampoline(
self.fd,
read=True,
timeout=self.gettimeout(),
timeout_exc=socket.timeout("timed out"))
def _recv_loop(self, recv_meth, *args):
fd = self.fd
if self.act_non_blocking:
return recv_meth(*args)
while True:
try:
# recv: bufsize=0?
# recv_into: buffer is empty?
# This is needed because behind the scenes we use sockets in
# nonblocking mode and builtin recv* methods. Attempting to read
# 0 bytes from a nonblocking socket using a builtin recv* method
# does not raise a timeout exception. Since we're simulating
# a blocking socket here we need to produce a timeout exception
# if needed, hence the call to trampoline.
if not args[0]:
self._read_trampoline()
return recv_meth(*args)
except socket.error as e:
if get_errno(e) in SOCKET_BLOCKING:
pass
elif get_errno(e) in SOCKET_CLOSED:
return b''
else:
raise
try:
self._read_trampoline()
except IOClosed as e:
# Perhaps we should return '' instead?
raise EOFError()
def recv(self, bufsize, flags=0):
return self._recv_loop(self.fd.recv, bufsize, flags)
def recvfrom(self, bufsize, flags=0):
return self._recv_loop(self.fd.recvfrom, bufsize, flags)
def recv_into(self, buffer, nbytes=0, flags=0):
return self._recv_loop(self.fd.recv_into, buffer, nbytes, flags)
def recvfrom_into(self, buffer, nbytes=0, flags=0):
return self._recv_loop(self.fd.recvfrom_into, buffer, nbytes, flags)
def _send_loop(self, send_method, data, *args):
if self.act_non_blocking:
return send_method(data, *args)
while 1:
try:
return send_method(data, *args)
except socket.error as e:
eno = get_errno(e)
if eno == errno.ENOTCONN or eno not in SOCKET_BLOCKING:
raise
try:
self._trampoline(self.fd, write=True, timeout=self.gettimeout(),
timeout_exc=socket.timeout("timed out"))
except IOClosed:
raise socket.error(errno.ECONNRESET, 'Connection closed by another thread')
def send(self, data, flags=0):
return self._send_loop(self.fd.send, data, flags)
def sendto(self, data, address, flags=0):
return self._send_loop(self.fd.sendto, data, address, flags)
def sendall(self, data, flags=0):
tail = self.send(data, flags)
len_data = len(data)
while tail < len_data:
tail += self.send(data[tail:], flags)
def setblocking(self, flag):
if flag:
self.act_non_blocking = False
self._timeout = None
else:
self.act_non_blocking = True
self._timeout = 0.0
def settimeout(self, howlong):
if howlong is None or howlong == _GLOBAL_DEFAULT_TIMEOUT:
self.setblocking(True)
return
try:
f = howlong.__float__
except AttributeError:
raise TypeError('a float is required')
howlong = f()
if howlong < 0.0:
raise ValueError('Timeout value out of range')
if howlong == 0.0:
self.act_non_blocking = True
self._timeout = 0.0
else:
self.act_non_blocking = False
self._timeout = howlong
def gettimeout(self):
return self._timeout
if "__pypy__" in sys.builtin_module_names:
def _reuse(self):
getattr(self.fd, '_sock', self.fd)._reuse()
def _drop(self):
getattr(self.fd, '_sock', self.fd)._drop()
def _operation_on_closed_file(*args, **kwargs):
raise ValueError("I/O operation on closed file")
greenpipe_doc = """
GreenPipe is a cooperative replacement for file class.
It will cooperate on pipes. It will block on regular file.
Differneces from file class:
- mode is r/w property. Should re r/o
- encoding property not implemented
- write/writelines will not raise TypeError exception when non-string data is written
it will write str(data) instead
- Universal new lines are not supported and newlines property not implementeded
- file argument can be descriptor, file name or file object.
"""
# import SSL module here so we can refer to greenio.SSL.exceptionclass
try:
from OpenSSL import SSL
except ImportError:
# pyOpenSSL not installed, define exceptions anyway for convenience
class SSL(object):
class WantWriteError(Exception):
pass
class WantReadError(Exception):
pass
class ZeroReturnError(Exception):
pass
class SysCallError(Exception):
pass
def shutdown_safe(sock):
""" Shuts down the socket. This is a convenience method for
code that wants to gracefully handle regular sockets, SSL.Connection
sockets from PyOpenSSL and ssl.SSLSocket objects from Python 2.6
interchangeably. Both types of ssl socket require a shutdown() before
close, but they have different arity on their shutdown method.
Regular sockets don't need a shutdown before close, but it doesn't hurt.
"""
try:
try:
# socket, ssl.SSLSocket
return sock.shutdown(socket.SHUT_RDWR)
except TypeError:
# SSL.Connection
return sock.shutdown()
except socket.error as e:
# we don't care if the socket is already closed;
# this will often be the case in an http server context
if get_errno(e) not in (errno.ENOTCONN, errno.EBADF):
raise