Backport function signature code from Python 3.3

Import PEP 362, function signatures, functionality from Python 3.3's
inspect module. Modifications have been made to make the code compatible
with Python 2.6 and 2.7, as well as 3.2+.
This commit is contained in:
Aaron Iles 2013-01-06 19:00:11 +11:00
parent c18d694fe4
commit 7e16c79cd4
4 changed files with 2139 additions and 2 deletions

View File

@ -1 +1,806 @@
# Copyright 2001-2013 Python Software Foundation; All Rights Reserved
"""Function signature objects for callables
Back port of Python 3.3's function signature tools from the inspect module,
modified to be compatible with Python 2.6, 2.7 and 3.2+.
"""
from __future__ import absolute_import, division, print_function
import itertools
import functools
import re
import types
try:
from collections import OrderedDict
except ImportError:
from funcsigs.odict import OrderedDict
from funcsigs.version import __version__
__all__ = ['BoundArguments', 'Parameter', 'Signature', 'signature']
_WrapperDescriptor = type(type.__call__)
_MethodWrapper = type(all.__call__)
_NonUserDefinedCallables = (_WrapperDescriptor,
_MethodWrapper,
types.BuiltinFunctionType)
def formatannotation(annotation, base_module=None):
if isinstance(annotation, type):
if annotation.__module__ in ('builtins', base_module):
return annotation.__name__
return annotation.__module__+'.'+annotation.__name__
return repr(annotation)
def _get_user_defined_method(cls, method_name, *nested):
try:
meth = getattr(cls, method_name)
for name in nested:
meth = getattr(meth, name, meth)
except AttributeError:
return
else:
if not isinstance(meth, _NonUserDefinedCallables):
# Once '__signature__' will be added to 'C'-level
# callables, this check won't be necessary
return meth
def signature(obj):
'''Get a signature object for the passed callable.'''
if not callable(obj):
raise TypeError('{0!r} is not a callable object'.format(obj))
if isinstance(obj, types.MethodType):
# In this case we skip the first parameter of the underlying
# function (usually `self` or `cls`).
sig = signature(obj.__func__)
return sig.replace(parameters=tuple(sig.parameters.values())[1:])
try:
sig = obj.__signature__
except AttributeError:
pass
else:
if sig is not None:
return sig
try:
# Was this function wrapped by a decorator?
wrapped = obj.__wrapped__
except AttributeError:
pass
else:
return signature(wrapped)
if isinstance(obj, types.FunctionType):
return Signature.from_function(obj)
if isinstance(obj, functools.partial):
sig = signature(obj.func)
new_params = OrderedDict(sig.parameters.items())
partial_args = obj.args or ()
partial_keywords = obj.keywords or {}
try:
ba = sig.bind_partial(*partial_args, **partial_keywords)
except TypeError as ex:
msg = 'partial object {0!r} has incorrect arguments'.format(obj)
raise ValueError(msg)
for arg_name, arg_value in ba.arguments.items():
param = new_params[arg_name]
if arg_name in partial_keywords:
# We set a new default value, because the following code
# is correct:
#
# >>> def foo(a): print(a)
# >>> print(partial(partial(foo, a=10), a=20)())
# 20
# >>> print(partial(partial(foo, a=10), a=20)(a=30))
# 30
#
# So, with 'partial' objects, passing a keyword argument is
# like setting a new default value for the corresponding
# parameter
#
# We also mark this parameter with '_partial_kwarg'
# flag. Later, in '_bind', the 'default' value of this
# parameter will be added to 'kwargs', to simulate
# the 'functools.partial' real call.
new_params[arg_name] = param.replace(default=arg_value,
_partial_kwarg=True)
elif (param.kind not in (_VAR_KEYWORD, _VAR_POSITIONAL) and
not param._partial_kwarg):
new_params.pop(arg_name)
return sig.replace(parameters=new_params.values())
sig = None
if isinstance(obj, type):
# obj is a class or a metaclass
# First, let's see if it has an overloaded __call__ defined
# in its metaclass
call = _get_user_defined_method(type(obj), '__call__')
if call is not None:
sig = signature(call)
else:
# Now we check if the 'obj' class has a '__new__' method
new = _get_user_defined_method(obj, '__new__')
if new is not None:
sig = signature(new)
else:
# Finally, we should have at least __init__ implemented
init = _get_user_defined_method(obj, '__init__')
if init is not None:
sig = signature(init)
elif not isinstance(obj, _NonUserDefinedCallables):
# An object with __call__
# We also check that the 'obj' is not an instance of
# _WrapperDescriptor or _MethodWrapper to avoid
# infinite recursion (and even potential segfault)
call = _get_user_defined_method(type(obj), '__call__', 'im_func')
if call is not None:
sig = signature(call)
if sig is not None:
# For classes and objects we skip the first parameter of their
# __call__, __new__, or __init__ methods
return sig.replace(parameters=tuple(sig.parameters.values())[1:])
if isinstance(obj, types.BuiltinFunctionType):
# Raise a nicer error message for builtins
msg = 'no signature found for builtin function {0!r}'.format(obj)
raise ValueError(msg)
raise ValueError('callable {0!r} is not supported by signature'.format(obj))
class _void(object):
'''A private marker - used in Parameter & Signature'''
class _empty(object):
pass
class _ParameterKind(int):
def __new__(self, *args, **kwargs):
obj = int.__new__(self, *args)
obj._name = kwargs['name']
return obj
def __str__(self):
return self._name
def __repr__(self):
return '<_ParameterKind: {0!r}>'.format(self._name)
_POSITIONAL_ONLY = _ParameterKind(0, name='POSITIONAL_ONLY')
_POSITIONAL_OR_KEYWORD = _ParameterKind(1, name='POSITIONAL_OR_KEYWORD')
_VAR_POSITIONAL = _ParameterKind(2, name='VAR_POSITIONAL')
_KEYWORD_ONLY = _ParameterKind(3, name='KEYWORD_ONLY')
_VAR_KEYWORD = _ParameterKind(4, name='VAR_KEYWORD')
class Parameter(object):
'''Represents a parameter in a function signature.
Has the following public attributes:
* name : str
The name of the parameter as a string.
* default : object
The default value for the parameter if specified. If the
parameter has no default value, this attribute is not set.
* annotation
The annotation for the parameter if specified. If the
parameter has no annotation, this attribute is not set.
* kind : str
Describes how argument values are bound to the parameter.
Possible values: `Parameter.POSITIONAL_ONLY`,
`Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`,
`Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`.
'''
__slots__ = ('_name', '_kind', '_default', '_annotation', '_partial_kwarg')
POSITIONAL_ONLY = _POSITIONAL_ONLY
POSITIONAL_OR_KEYWORD = _POSITIONAL_OR_KEYWORD
VAR_POSITIONAL = _VAR_POSITIONAL
KEYWORD_ONLY = _KEYWORD_ONLY
VAR_KEYWORD = _VAR_KEYWORD
empty = _empty
def __init__(self, name, kind, default=_empty, annotation=_empty,
_partial_kwarg=False):
if kind not in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD,
_VAR_POSITIONAL, _KEYWORD_ONLY, _VAR_KEYWORD):
raise ValueError("invalid value for 'Parameter.kind' attribute")
self._kind = kind
if default is not _empty:
if kind in (_VAR_POSITIONAL, _VAR_KEYWORD):
msg = '{0} parameters cannot have default values'.format(kind)
raise ValueError(msg)
self._default = default
self._annotation = annotation
if name is None:
if kind != _POSITIONAL_ONLY:
raise ValueError("None is not a valid name for a "
"non-positional-only parameter")
self._name = name
else:
name = str(name)
if kind != _POSITIONAL_ONLY and not re.match(r'[a-z_]\w*$', name, re.I):
msg = '{0!r} is not a valid parameter name'.format(name)
raise ValueError(msg)
self._name = name
self._partial_kwarg = _partial_kwarg
@property
def name(self):
return self._name
@property
def default(self):
return self._default
@property
def annotation(self):
return self._annotation
@property
def kind(self):
return self._kind
def replace(self, name=_void, kind=_void, annotation=_void,
default=_void, _partial_kwarg=_void):
'''Creates a customized copy of the Parameter.'''
if name is _void:
name = self._name
if kind is _void:
kind = self._kind
if annotation is _void:
annotation = self._annotation
if default is _void:
default = self._default
if _partial_kwarg is _void:
_partial_kwarg = self._partial_kwarg
return type(self)(name, kind, default=default, annotation=annotation,
_partial_kwarg=_partial_kwarg)
def __str__(self):
kind = self.kind
formatted = self._name
if kind == _POSITIONAL_ONLY:
if formatted is None:
formatted = ''
formatted = '<{0}>'.format(formatted)
# Add annotation and default value
if self._annotation is not _empty:
formatted = '{0}:{1}'.format(formatted,
formatannotation(self._annotation))
if self._default is not _empty:
formatted = '{0}={1}'.format(formatted, repr(self._default))
if kind == _VAR_POSITIONAL:
formatted = '*' + formatted
elif kind == _VAR_KEYWORD:
formatted = '**' + formatted
return formatted
def __repr__(self):
return '<{0} at {1:#x} {2!r}>'.format(self.__class__.__name__,
id(self), self.name)
def __hash__(self):
msg = "unhashable type: '{0}'".format(self.__class__.__name__)
raise TypeError(msg)
def __eq__(self, other):
return (issubclass(other.__class__, Parameter) and
self._name == other._name and
self._kind == other._kind and
self._default == other._default and
self._annotation == other._annotation)
def __ne__(self, other):
return not self.__eq__(other)
class BoundArguments(object):
'''Result of `Signature.bind` call. Holds the mapping of arguments
to the function's parameters.
Has the following public attributes:
* arguments : OrderedDict
An ordered mutable mapping of parameters' names to arguments' values.
Does not contain arguments' default values.
* signature : Signature
The Signature object that created this instance.
* args : tuple
Tuple of positional arguments values.
* kwargs : dict
Dict of keyword arguments values.
'''
def __init__(self, signature, arguments):
self.arguments = arguments
self._signature = signature
@property
def signature(self):
return self._signature
@property
def args(self):
args = []
for param_name, param in self._signature.parameters.items():
if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or
param._partial_kwarg):
# Keyword arguments mapped by 'functools.partial'
# (Parameter._partial_kwarg is True) are mapped
# in 'BoundArguments.kwargs', along with VAR_KEYWORD &
# KEYWORD_ONLY
break
try:
arg = self.arguments[param_name]
except KeyError:
# We're done here. Other arguments
# will be mapped in 'BoundArguments.kwargs'
break
else:
if param.kind == _VAR_POSITIONAL:
# *args
args.extend(arg)
else:
# plain argument
args.append(arg)
return tuple(args)
@property
def kwargs(self):
kwargs = {}
kwargs_started = False
for param_name, param in self._signature.parameters.items():
if not kwargs_started:
if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or
param._partial_kwarg):
kwargs_started = True
else:
if param_name not in self.arguments:
kwargs_started = True
continue
if not kwargs_started:
continue
try:
arg = self.arguments[param_name]
except KeyError:
pass
else:
if param.kind == _VAR_KEYWORD:
# **kwargs
kwargs.update(arg)
else:
# plain keyword argument
kwargs[param_name] = arg
return kwargs
def __hash__(self):
msg = "unhashable type: '{0}'".format(self.__class__.__name__)
raise TypeError(msg)
def __eq__(self, other):
return (issubclass(other.__class__, BoundArguments) and
self.signature == other.signature and
self.arguments == other.arguments)
def __ne__(self, other):
return not self.__eq__(other)
class Signature(object):
'''A Signature object represents the overall signature of a function.
It stores a Parameter object for each parameter accepted by the
function, as well as information specific to the function itself.
A Signature object has the following public attributes and methods:
* parameters : OrderedDict
An ordered mapping of parameters' names to the corresponding
Parameter objects (keyword-only arguments are in the same order
as listed in `code.co_varnames`).
* return_annotation : object
The annotation for the return type of the function if specified.
If the function has no annotation for its return type, this
attribute is not set.
* bind(*args, **kwargs) -> BoundArguments
Creates a mapping from positional and keyword arguments to
parameters.
* bind_partial(*args, **kwargs) -> BoundArguments
Creates a partial mapping from positional and keyword arguments
to parameters (simulating 'functools.partial' behavior.)
'''
__slots__ = ('_return_annotation', '_parameters')
_parameter_cls = Parameter
_bound_arguments_cls = BoundArguments
empty = _empty
def __init__(self, parameters=None, return_annotation=_empty,
__validate_parameters__=True):
'''Constructs Signature from the given list of Parameter
objects and 'return_annotation'. All arguments are optional.
'''
if parameters is None:
params = OrderedDict()
else:
if __validate_parameters__:
params = OrderedDict()
top_kind = _POSITIONAL_ONLY
for idx, param in enumerate(parameters):
kind = param.kind
if kind < top_kind:
msg = 'wrong parameter order: {0} before {1}'
msg = msg.format(top_kind, param.kind)
raise ValueError(msg)
else:
top_kind = kind
name = param.name
if name is None:
name = str(idx)
param = param.replace(name=name)
if name in params:
msg = 'duplicate parameter name: {0!r}'.format(name)
raise ValueError(msg)
params[name] = param
else:
params = OrderedDict(((param.name, param)
for param in parameters))
self._parameters = params
self._return_annotation = return_annotation
@classmethod
def from_function(cls, func):
'''Constructs Signature for the given python function'''
if not isinstance(func, types.FunctionType):
raise TypeError('{0!r} is not a Python function'.format(func))
Parameter = cls._parameter_cls
# Parameter information.
func_code = func.__code__
pos_count = func_code.co_argcount
arg_names = func_code.co_varnames
positional = tuple(arg_names[:pos_count])
keyword_only_count = getattr(func_code, 'co_kwonlyargcount', 0)
keyword_only = arg_names[pos_count:(pos_count + keyword_only_count)]
annotations = getattr(func, '__annotations__', {})
defaults = func.__defaults__
kwdefaults = getattr(func, '__kwdefaults__', None)
if defaults:
pos_default_count = len(defaults)
else:
pos_default_count = 0
parameters = []
# Non-keyword-only parameters w/o defaults.
non_default_count = pos_count - pos_default_count
for name in positional[:non_default_count]:
annotation = annotations.get(name, _empty)
parameters.append(Parameter(name, annotation=annotation,
kind=_POSITIONAL_OR_KEYWORD))
# ... w/ defaults.
for offset, name in enumerate(positional[non_default_count:]):
annotation = annotations.get(name, _empty)
parameters.append(Parameter(name, annotation=annotation,
kind=_POSITIONAL_OR_KEYWORD,
default=defaults[offset]))
# *args
if func_code.co_flags & 0x04:
name = arg_names[pos_count + keyword_only_count]
annotation = annotations.get(name, _empty)
parameters.append(Parameter(name, annotation=annotation,
kind=_VAR_POSITIONAL))
# Keyword-only parameters.
for name in keyword_only:
default = _empty
if kwdefaults is not None:
default = kwdefaults.get(name, _empty)
annotation = annotations.get(name, _empty)
parameters.append(Parameter(name, annotation=annotation,
kind=_KEYWORD_ONLY,
default=default))
# **kwargs
if func_code.co_flags & 0x08:
index = pos_count + keyword_only_count
if func_code.co_flags & 0x04:
index += 1
name = arg_names[index]
annotation = annotations.get(name, _empty)
parameters.append(Parameter(name, annotation=annotation,
kind=_VAR_KEYWORD))
return cls(parameters,
return_annotation=annotations.get('return', _empty),
__validate_parameters__=False)
@property
def parameters(self):
try:
return types.MappingProxyType(self._parameters)
except AttributeError:
return OrderedDict(self._parameters.items())
@property
def return_annotation(self):
return self._return_annotation
def replace(self, parameters=_void, return_annotation=_void):
'''Creates a customized copy of the Signature.
Pass 'parameters' and/or 'return_annotation' arguments
to override them in the new copy.
'''
if parameters is _void:
parameters = self.parameters.values()
if return_annotation is _void:
return_annotation = self._return_annotation
return type(self)(parameters,
return_annotation=return_annotation)
def __hash__(self):
msg = "unhashable type: '{0}'".format(self.__class__.__name__)
raise TypeError(msg)
def __eq__(self, other):
if (not issubclass(type(other), Signature) or
self.return_annotation != other.return_annotation or
len(self.parameters) != len(other.parameters)):
return False
other_positions = dict((param, idx)
for idx, param in enumerate(other.parameters.keys()))
for idx, (param_name, param) in enumerate(self.parameters.items()):
if param.kind == _KEYWORD_ONLY:
try:
other_param = other.parameters[param_name]
except KeyError:
return False
else:
if param != other_param:
return False
else:
try:
other_idx = other_positions[param_name]
except KeyError:
return False
else:
if (idx != other_idx or
param != other.parameters[param_name]):
return False
return True
def __ne__(self, other):
return not self.__eq__(other)
def _bind(self, args, kwargs, partial=False):
'''Private method. Don't use directly.'''
arguments = OrderedDict()
parameters = iter(self.parameters.values())
parameters_ex = ()
arg_vals = iter(args)
if partial:
# Support for binding arguments to 'functools.partial' objects.
# See 'functools.partial' case in 'signature()' implementation
# for details.
for param_name, param in self.parameters.items():
if (param._partial_kwarg and param_name not in kwargs):
# Simulating 'functools.partial' behavior
kwargs[param_name] = param.default
while True:
# Let's iterate through the positional arguments and corresponding
# parameters
try:
arg_val = next(arg_vals)
except StopIteration:
# No more positional arguments
try:
param = next(parameters)
except StopIteration:
# No more parameters. That's it. Just need to check that
# we have no `kwargs` after this while loop
break
else:
if param.kind == _VAR_POSITIONAL:
# That's OK, just empty *args. Let's start parsing
# kwargs
break
elif param.name in kwargs:
if param.kind == _POSITIONAL_ONLY:
msg = '{arg!r} parameter is positional only, ' \
'but was passed as a keyword'
msg = msg.format(arg=param.name)
raise TypeError(msg)
parameters_ex = (param,)
break
elif (param.kind == _VAR_KEYWORD or
param.default is not _empty):
# That's fine too - we have a default value for this
# parameter. So, lets start parsing `kwargs`, starting
# with the current parameter
parameters_ex = (param,)
break
else:
if partial:
parameters_ex = (param,)
break
else:
msg = '{arg!r} parameter lacking default value'
msg = msg.format(arg=param.name)
raise TypeError(msg)
else:
# We have a positional argument to process
try:
param = next(parameters)
except StopIteration:
raise TypeError('too many positional arguments')
else:
if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY):
# Looks like we have no parameter for this positional
# argument
raise TypeError('too many positional arguments')
if param.kind == _VAR_POSITIONAL:
# We have an '*args'-like argument, let's fill it with
# all positional arguments we have left and move on to
# the next phase
values = [arg_val]
values.extend(arg_vals)
arguments[param.name] = tuple(values)
break
if param.name in kwargs:
raise TypeError('multiple values for argument '
'{arg!r}'.format(arg=param.name))
arguments[param.name] = arg_val
# Now, we iterate through the remaining parameters to process
# keyword arguments
kwargs_param = None
for param in itertools.chain(parameters_ex, parameters):
if param.kind == _POSITIONAL_ONLY:
# This should never happen in case of a properly built
# Signature object (but let's have this check here
# to ensure correct behaviour just in case)
raise TypeError('{arg!r} parameter is positional only, '
'but was passed as a keyword'. \
format(arg=param.name))
if param.kind == _VAR_KEYWORD:
# Memorize that we have a '**kwargs'-like parameter
kwargs_param = param
continue
param_name = param.name
try:
arg_val = kwargs.pop(param_name)
except KeyError:
# We have no value for this parameter. It's fine though,
# if it has a default value, or it is an '*args'-like
# parameter, left alone by the processing of positional
# arguments.
if (not partial and param.kind != _VAR_POSITIONAL and
param.default is _empty):
raise TypeError('{arg!r} parameter lacking default value'. \
format(arg=param_name))
else:
arguments[param_name] = arg_val
if kwargs:
if kwargs_param is not None:
# Process our '**kwargs'-like parameter
arguments[kwargs_param.name] = kwargs
else:
raise TypeError('too many keyword arguments')
return self._bound_arguments_cls(self, arguments)
def bind(self, *args, **kwargs):
'''Get a BoundArguments object, that maps the passed `args`
and `kwargs` to the function's signature. Raises `TypeError`
if the passed arguments can not be bound.
'''
return self._bind(args, kwargs)
def bind_partial(self, *args, **kwargs):
'''Get a BoundArguments object, that partially maps the
passed `args` and `kwargs` to the function's signature.
Raises `TypeError` if the passed arguments can not be bound.
'''
return self._bind(args, kwargs, partial=True)
def __str__(self):
result = []
render_kw_only_separator = True
for idx, param in enumerate(self.parameters.values()):
formatted = str(param)
kind = param.kind
if kind == _VAR_POSITIONAL:
# OK, we have an '*args'-like parameter, so we won't need
# a '*' to separate keyword-only arguments
render_kw_only_separator = False
elif kind == _KEYWORD_ONLY and render_kw_only_separator:
# We have a keyword-only parameter to render and we haven't
# rendered an '*args'-like parameter before, so add a '*'
# separator to the parameters list ("foo(arg1, *, arg2)" case)
result.append('*')
# This condition should be only triggered once, so
# reset the flag
render_kw_only_separator = False
result.append(formatted)
rendered = '({0})'.format(', '.join(result))
if self.return_annotation is not _empty:
anno = formatannotation(self.return_annotation)
rendered += ' -> {0}'.format(anno)
return rendered

261
funcsigs/odict.py Normal file
View File

@ -0,0 +1,261 @@
# Backport of OrderedDict() class that runs on Python 2.4, 2.5, 2.6, 2.7 and pypy.
# Passes Python2.7's test suite and incorporates all the latest updates.
# Copyright 2009 Raymond Hettinger
# http://code.activestate.com/recipes/576693/
"Ordered dictionary"
try:
from thread import get_ident as _get_ident
except ImportError:
from dummy_thread import get_ident as _get_ident
try:
from _abcoll import KeysView, ValuesView, ItemsView
except ImportError:
pass
class OrderedDict(dict):
'Dictionary that remembers insertion order'
# An inherited dict maps keys to values.
# The inherited dict provides __getitem__, __len__, __contains__, and get.
# The remaining methods are order-aware.
# Big-O running times for all methods are the same as for regular dictionaries.
# The internal self.__map dictionary maps keys to links in a doubly linked list.
# The circular doubly linked list starts and ends with a sentinel element.
# The sentinel element never gets deleted (this simplifies the algorithm).
# Each link is stored as a list of length three: [PREV, NEXT, KEY].
def __init__(self, *args, **kwds):
'''Initialize an ordered dictionary. Signature is the same as for
regular dictionaries, but keyword arguments are not recommended
because their insertion order is arbitrary.
'''
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
try:
self.__root
except AttributeError:
self.__root = root = [] # sentinel node
root[:] = [root, root, None]
self.__map = {}
self.__update(*args, **kwds)
def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link which goes at the end of the linked
# list, and the inherited dictionary is updated with the new key/value pair.
if key not in self:
root = self.__root
last = root[0]
last[1] = root[0] = self.__map[key] = [last, root, key]
dict_setitem(self, key, value)
def __delitem__(self, key, dict_delitem=dict.__delitem__):
'od.__delitem__(y) <==> del od[y]'
# Deleting an existing item uses self.__map to find the link which is
# then removed by updating the links in the predecessor and successor nodes.
dict_delitem(self, key)
link_prev, link_next, key = self.__map.pop(key)
link_prev[1] = link_next
link_next[0] = link_prev
def __iter__(self):
'od.__iter__() <==> iter(od)'
root = self.__root
curr = root[1]
while curr is not root:
yield curr[2]
curr = curr[1]
def __reversed__(self):
'od.__reversed__() <==> reversed(od)'
root = self.__root
curr = root[0]
while curr is not root:
yield curr[2]
curr = curr[0]
def clear(self):
'od.clear() -> None. Remove all items from od.'
try:
for node in self.__map.itervalues():
del node[:]
root = self.__root
root[:] = [root, root, None]
self.__map.clear()
except AttributeError:
pass
dict.clear(self)
def popitem(self, last=True):
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false.
'''
if not self:
raise KeyError('dictionary is empty')
root = self.__root
if last:
link = root[0]
link_prev = link[0]
link_prev[1] = root
root[0] = link_prev
else:
link = root[1]
link_next = link[1]
root[1] = link_next
link_next[0] = root
key = link[2]
del self.__map[key]
value = dict.pop(self, key)
return key, value
# -- the following methods do not depend on the internal structure --
def keys(self):
'od.keys() -> list of keys in od'
return list(self)
def values(self):
'od.values() -> list of values in od'
return [self[key] for key in self]
def items(self):
'od.items() -> list of (key, value) pairs in od'
return [(key, self[key]) for key in self]
def iterkeys(self):
'od.iterkeys() -> an iterator over the keys in od'
return iter(self)
def itervalues(self):
'od.itervalues -> an iterator over the values in od'
for k in self:
yield self[k]
def iteritems(self):
'od.iteritems -> an iterator over the (key, value) items in od'
for k in self:
yield (k, self[k])
def update(*args, **kwds):
'''od.update(E, **F) -> None. Update od from dict/iterable E and F.
If E is a dict instance, does: for k in E: od[k] = E[k]
If E has a .keys() method, does: for k in E.keys(): od[k] = E[k]
Or if E is an iterable of items, does: for k, v in E: od[k] = v
In either case, this is followed by: for k, v in F.items(): od[k] = v
'''
if len(args) > 2:
raise TypeError('update() takes at most 2 positional '
'arguments (%d given)' % (len(args),))
elif not args:
raise TypeError('update() takes at least 1 argument (0 given)')
self = args[0]
# Make progressively weaker assumptions about "other"
other = ()
if len(args) == 2:
other = args[1]
if isinstance(other, dict):
for key in other:
self[key] = other[key]
elif hasattr(other, 'keys'):
for key in other.keys():
self[key] = other[key]
else:
for key, value in other:
self[key] = value
for key, value in kwds.items():
self[key] = value
__update = update # let subclasses override update without breaking __init__
__marker = object()
def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
'''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default
def setdefault(self, key, default=None):
'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
if key in self:
return self[key]
self[key] = default
return default
def __repr__(self, _repr_running={}):
'od.__repr__() <==> repr(od)'
call_key = id(self), _get_ident()
if call_key in _repr_running:
return '...'
_repr_running[call_key] = 1
try:
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, self.items())
finally:
del _repr_running[call_key]
def __reduce__(self):
'Return state information for pickling'
items = [[k, self[k]] for k in self]
inst_dict = vars(self).copy()
for k in vars(OrderedDict()):
inst_dict.pop(k, None)
if inst_dict:
return (self.__class__, (items,), inst_dict)
return self.__class__, (items,)
def copy(self):
'od.copy() -> a shallow copy of od'
return self.__class__(self)
@classmethod
def fromkeys(cls, iterable, value=None):
'''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S
and values equal to v (which defaults to None).
'''
d = cls()
for key in iterable:
d[key] = value
return d
def __eq__(self, other):
'''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
while comparison to a regular mapping is order-insensitive.
'''
if isinstance(other, OrderedDict):
return len(self)==len(other) and self.items() == other.items()
return dict.__eq__(self, other)
def __ne__(self, other):
return not self == other
# -- the following methods are only used in Python 2.7 --
def viewkeys(self):
"od.viewkeys() -> a set-like object providing a view on od's keys"
return KeysView(self)
def viewvalues(self):
"od.viewvalues() -> an object providing a view on od's values"
return ValuesView(self)
def viewitems(self):
"od.viewitems() -> a set-like object providing a view on od's items"
return ItemsView(self)

View File

@ -7,13 +7,69 @@ except ImportError:
import doctest
import funcsigs
import funcsigs as inspect
class TestFunctionSignatures(unittest.TestCase):
@staticmethod
def signature(func):
sig = inspect.signature(func)
return (tuple((param.name,
(Ellipsis if param.default is param.empty else param.default),
(Ellipsis if param.annotation is param.empty
else param.annotation),
str(param.kind).lower())
for param in sig.parameters.values()),
(Ellipsis if sig.return_annotation is sig.empty
else sig.return_annotation))
def test_zero_arguments(self):
def test():
pass
self.assertEqual(self.signature(test),
((), Ellipsis))
def test_single_positional_argument(self):
def test(a):
pass
self.assertEqual(self.signature(test),
(((('a', Ellipsis, Ellipsis, "positional_or_keyword")),), Ellipsis))
def test_single_keyword_argument(self):
def test(a=None):
pass
self.assertEqual(self.signature(test),
(((('a', None, Ellipsis, "positional_or_keyword")),), Ellipsis))
def test_var_args(self):
def test(*args):
pass
self.assertEqual(self.signature(test),
(((('args', Ellipsis, Ellipsis, "var_positional")),), Ellipsis))
def test_keywords_args(self):
def test(**kwargs):
pass
self.assertEqual(self.signature(test),
(((('kwargs', Ellipsis, Ellipsis, "var_keyword")),), Ellipsis))
def test_multiple_arguments(self):
def test(a, b=None, *args, **kwargs):
pass
self.assertEqual(self.signature(test), ((
('a', Ellipsis, Ellipsis, "positional_or_keyword"),
('b', None, Ellipsis, "positional_or_keyword"),
('args', Ellipsis, Ellipsis, "var_positional"),
('kwargs', Ellipsis, Ellipsis, "var_keyword"),
), Ellipsis))
def test_has_version(self):
self.assertTrue(funcsigs.__version__)
self.assertTrue(inspect.__version__)
def test_readme(self):
doctest.testfile('../README.rst')
if __name__ == "__main__":
unittest.begin()

1015
tests/test_inspect.py Normal file

File diff suppressed because it is too large Load Diff