Starting work on 0.8 compat

This commit is contained in:
David Arthur
2013-02-13 10:22:13 -05:00
parent 0bc2afe910
commit 71fef1b155
2 changed files with 562 additions and 0 deletions

524
kafka/client08.py Normal file
View File

@@ -0,0 +1,524 @@
import base64
from collections import namedtuple, defaultdict
from functools import partial
from itertools import groupby, count
import logging
from operator import attrgetter
import socket
import struct
import time
import zlib
from .codec import gzip_encode, gzip_decode
from .codec import snappy_encode, snappy_decode
from .util import read_short_string, read_int_string
from .util import relative_unpack
from .util import write_short_string, write_int_string
log = logging.getLogger("kafka")
# Request payloads
ProduceRequest = namedtuple("ProduceRequest", ["topic", "partition", "messages"])
FetchRequest = namedtuple("FetchRequest", ["topic", "partition", "offset", "maxBytes"])
OffsetRequest = namedtuple("OffsetRequest", ["topic", "partition", "time", "maxOffsets"])
# Response payloads
ProduceResponse = namedtuple("ProduceResponse", ["topic", "partition", "error", "offset"])
FetchResponse = namedtuple("FetchResponse", ["topic", "partition", "error", "highwaterMark", "messages"])
OffsetResponse = namedtuple("OffsetResponse", ["topic", "partition", "error", "offset"])
BrokerMetadata = namedtuple("BrokerMetadata", ["nodeId", "host", "port"])
PartitionMetadata = namedtuple("PartitionMetadata", ["topic", "partitionId", "leader", "replicas", "isr"])
# Other useful structs
OffsetAndMessage = namedtuple("OffsetAndMessage", ["offset", "message"])
Message = namedtuple("Message", ["magic", "attributes", "key", "value"])
TopicAndPartition = namedtuple("TopicAndPartition", ["topic", "partitionId"])
class ErrorMapping(object):
Unknown = -1
NoError = 0
OffsetOutOfRange = 1
InvalidMessage = 2
UnknownTopicOrPartition = 3
InvalidFetchSize = 4
LeaderNotAvailable = 5
NotLeaderForPartition = 6
RequestTimedOut = 7
BrokerNotAvailable = 8
ReplicaNotAvailable = 9
MessageSizeTooLarge = 10
StaleControllerEpoch = 11
OffsetMetadataTooLarge = 12
class KafkaProtocol(object):
PRODUCE_KEY = 0
FETCH_KEY = 1
OFFSET_KEY = 2
METADATA_KEY = 3
ATTRIBUTE_CODEC_MASK = 0x03
@classmethod
def encode_message_header(cls, clientId, correlationId, requestKey):
return struct.pack('>HHiH%ds' % len(clientId),
requestKey, # ApiKey
0, # ApiVersion
correlationId, # CorrelationId
len(clientId), #
clientId) # ClientId
@classmethod
def encode_message_set(cls, messages):
message_set = ""
for message in messages:
encoded_message = KafkaProtocol.encode_message(message)
message_set += struct.pack('>qi%ds' % len(encoded_message), 0, len(encoded_message), encoded_message)
return message_set
@classmethod
def encode_message(cls, message):
if message.magic == 0:
msg = struct.pack('>BB', message.magic, message.attributes)
msg += write_int_string(message.key)
msg += write_int_string(message.value)
crc = zlib.crc32(msg)
msg = struct.pack('>i%ds' % len(msg), crc, msg)
else:
raise Exception("Unexpected magic number: %d" % message.magic)
return msg
@classmethod
def create_message(cls, value):
return Message(0, 0, "foo", value)
@classmethod
def create_gzip_message(cls, value):
message_set = KafkaProtocol.encode_message_set([KafkaProtocol.create_message(value)])
gzipped = gzip_encode(message_set)
return Message(0, 0x00 | (KafkaProtocol.ATTRIBUTE_CODEC_MASK & 0x01), "foo", gzipped)
@classmethod
def decode_message_set_iter(cls, data):
"""
Decode a MessageSet, iteratively
Reads repeated elements of (offset, message), calling decode_message to decode a
single message. Since compressed messages contain futher MessageSets, these two methods
have been decoupled so that they may recurse easily.
Format
======
MessageSet => [Offset MessageSize Message]
Offset => int64
MessageSize => int32
N.B., the repeating element of the MessageSet is not preceded by an int32 like other
repeating elements in this protocol
"""
cur = 0
while cur < len(data):
((offset, ), cur) = relative_unpack('>q', data, cur)
(msg, cur) = read_int_string(data, cur)
for (offset, message) in KafkaProtocol.decode_message(msg, offset):
yield OffsetAndMessage(offset, message)
@classmethod
def decode_message(cls, data, offset):
"""
Decode a single Message
The only caller of this method is decode_message_set_iter. They are decoupled to
support nested messages (compressed MessageSets). The offset is actually read from
decode_message_set_iter (it is part of the MessageSet payload).
Format
========
Message => Crc MagicByte Attributes Key Value
Crc => int32
MagicByte => int8
Attributes => int8
Key => bytes
Value => bytes
"""
((crc, magic, att), cur) = relative_unpack('>iBB', data, 0)
assert crc == zlib.crc32(data[4:])
(key, cur) = read_int_string(data, cur)
(value, cur) = read_int_string(data, cur)
if att & KafkaProtocol.ATTRIBUTE_CODEC_MASK == 0:
yield (offset, Message(magic, att, key, value))
elif att & KafkaProtocol.ATTRIBUTE_CODEC_MASK == 1:
gz = gzip_decode(value)
for (offset, message) in KafkaProtocol.decode_message_set_iter(gz):
yield (offset, message)
elif att & KafkaProtocol.ATTRIBUTE_CODEC_MASK == 2:
snp = snappy_decode(value)
for (offset, message) in KafkaProtocol.decode_message_set_iter(snp):
yield (offset, message)
@classmethod
def encode_metadata_request(cls, clientId, correlationId, *topics):
# Header
message = cls.encode_message_header(clientId, correlationId, KafkaProtocol.METADATA_KEY)
# TopicMetadataRequest
message += struct.pack('>i', len(topics))
for topic in topics:
message += struct.pack('>H%ds' % len(topic), len(topic), topic)
# Length-prefix the whole thing
return write_int_string(message)
@classmethod
def decode_metadata_response(cls, data):
# TopicMetadataResponse
cur = 0
((correlationId, numBrokers), cur) = relative_unpack('>ii', data, cur)
brokers = {}
for i in range(numBrokers):
((nodeId, ), cur) = relative_unpack('>i', data, cur)
(host, cur) = read_short_string(data, cur)
((port,), cur) = relative_unpack('>i', data, cur)
brokers[nodeId] = BrokerMetadata(nodeId, host, port)
((numTopics,), cur) = relative_unpack('>i', data, cur)
topicMetadata = {}
for i in range(numTopics):
((topicError,), cur) = relative_unpack('>H', data, cur)
(topicName, cur) = read_short_string(data, cur)
((numPartitions,), cur) = relative_unpack('>i', data, cur)
partitionMetadata = {}
for j in range(numPartitions):
((partitionErrorCode, partitionId, leader, numReplicas), cur) = relative_unpack('>Hiii', data, cur)
(replicas, cur) = relative_unpack('>%di' % numReplicas, data, cur)
((numIsr,), cur) = relative_unpack('>i', data, cur)
(isr, cur) = relative_unpack('>%di' % numIsr, data, cur)
partitionMetadata[partitionId] = PartitionMetadata(topicName, partitionId, leader, replicas, isr)
topicMetadata[topicName] = partitionMetadata
return (brokers, topicMetadata)
@classmethod
def encode_produce_request(self, clientId, correlationId, payloads=[], acks=1, timeout=1000):
# Group the payloads by topic
sorted_payloads = sorted(payloads, key=attrgetter("topic"))
grouped_payloads = list(groupby(sorted_payloads, key=attrgetter("topic")))
# Pack the message header
message = struct.pack('>HHiH%ds' % len(clientId),
KafkaProtocol.PRODUCE_KEY, # ApiKey
0, # ApiVersion
correlationId, # CorrelationId
len(clientId), #
clientId) # ClientId
# Pack the message sets
message += struct.pack('>Hii', acks, timeout, len(grouped_payloads))
for topic, payload in grouped_payloads:
payloads = list(payloads)
message += struct.pack('>H%dsi' % len(topic), len(topic), topic, len(payloads))
for payload in payloads:
message_set = KafkaProtocol.encode_message_set(payload.messages)
message += struct.pack('>ii%ds' % len(message_set), payload.partition, len(message_set), message_set)
# Length-prefix the whole thing
return struct.pack('>i%ds' % len(message), len(message), message)
@classmethod
def decode_produce_response(cls, data):
((correlationId, numTopics), cur) = relative_unpack('>ii', data, 0)
for i in range(numTopics):
((strlen,), cur) = relative_unpack('>H', data, cur)
topic = data[cur:cur+strlen]
cur += strlen
((numPartitions,), cur) = relative_unpack('>i', data, cur)
for i in range(numPartitions):
((partition, error, offset), cur) = relative_unpack('>iHq', data, cur)
yield ProduceResponse(topic, partition, error, offset)
@classmethod
def encode_fetch_request(cls, clientId, correlationId, payloads=[], replicaId=-1, maxWaitTime=100, minBytes=1024):
# Group the payloads by topic
sorted_payloads = sorted(payloads, key=attrgetter("topic"))
grouped_payloads = list(groupby(sorted_payloads, key=attrgetter("topic")))
# Pack the message header
message = struct.pack('>HHiH%ds' % len(clientId),
KafkaProtocol.FETCH_KEY, # ApiKey
0, # ApiVersion
correlationId, # CorrelationId
len(clientId), #
clientId) # ClientId
# Pack the FetchRequest
message += struct.pack('>iiii',
replicaId, # ReplicaId
maxWaitTime, # MaxWaitTime
minBytes, # MinBytes
len(grouped_payloads))
for topic, payload in grouped_payloads:
payloads = list(payloads)
message += write_short_string(topic)
message += struct.pack('>i', len(payloads))
for payload in payloads:
message += struct.pack('>iqi', payload.partition, payload.offset, payload.maxBytes)
# Length-prefix the whole thing
return struct.pack('>i%ds' % len(message), len(message), message)
@classmethod
def decode_fetch_response_iter(cls, data):
((correlationId, numTopics), cur) = relative_unpack('>ii', data, 0)
for i in range(numTopics):
(topic, cur) = read_short_string(data, cur)
((numPartitions,), cur) = relative_unpack('>i', data, cur)
for i in range(numPartitions):
((partition, error, highwaterMarkOffset), cur) = relative_unpack('>iHq', data, cur)
(messageSet, cur) = read_int_string(data, cur)
yield FetchResponse(topic, partition, error, highwaterMarkOffset, KafkaProtocol.decode_message_set_iter(messageSet))
@classmethod
def encode_offset_request(cls, clientId, correlationId, payloads=[], replicaId=-1):
# Group the payloads by topic
sorted_payloads = sorted(payloads, key=attrgetter("topic"))
grouped_payloads = list(groupby(sorted_payloads, key=attrgetter("topic")))
# Pack the message header
message = struct.pack('>HHiH%ds' % len(clientId),
KafkaProtocol.OFFSET_KEY, # ApiKey
0, # ApiVersion
correlationId, # CorrelationId
len(clientId), #
clientId) # ClientId
message += struct.pack('>ii', replicaId, len(grouped_payloads))
# Pack the OffsetRequest
for topic, payload in grouped_payloads:
payloads = list(payloads)
message += write_short_string(topic)
message += struct.pack('>i', len(payloads))
for payload in payloads:
message += struct.pack('>iqi', payload.partition, payload.time, payload.maxOffsets)
# Length-prefix the whole thing
return struct.pack('>i%ds' % len(message), len(message), message)
@classmethod
def decode_offset_response(cls, data):
((correlationId, numTopics), cur) = relative_unpack('>ii', data, 0)
for i in range(numTopics):
(topic, cur) = read_short_string(data, cur)
((numPartitions,), cur) = relative_unpack('>i', data, cur)
for i in range(numPartitions):
((partition, error, offset), cur) = relative_unpack('>iHq', data, cur)
yield OffsetResponse(topic, partition, error, offset)
class Conn(object):
"""
A socket connection to a single Kafka broker
"""
def __init__(self, host, port, bufsize=1024):
self.host = host
self.port = port
self.bufsize = bufsize
self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self._sock.connect((host, port))
self._sock.settimeout(10)
def close(self):
self._sock.close()
def _consume_response(self):
"""
Fully consumer the response iterator
"""
data = ""
for chunk in self._consume_response_iter():
data += chunk
return data
def _consume_response_iter(self):
"""
This method handles the response header and error messages. It
then returns an iterator for the chunks of the response
"""
log.debug("Handling response from Kafka")
# Header
resp = self._sock.recv(4)
if resp == "":
raise Exception("Got no response from Kafka")
(size,) = struct.unpack('>i', resp)
messageSize = size - 4
log.debug("About to read %d bytes from Kafka", messageSize)
# Response iterator
total = 0
while total < messageSize:
resp = self._sock.recv(self.bufsize)
log.debug("Read %d bytes from Kafka", len(resp))
if resp == "":
raise Exception("Underflow")
total += len(resp)
yield resp
def send(self, requestId, payload):
#print(repr(payload))
sent = self._sock.sendall(payload)
if sent == 0:
raise RuntimeError("Kafka went away")
self.data = self._consume_response()
#print(repr(self.data))
def recv(self, requestId):
return self.data
class KafkaConnection(object):
"""
Low-level API for Kafka 0.8
"""
# ClientId for Kafka
CLIENT_ID = "kafka-python"
# Global correlation ids
ID_GEN = count()
def __init__(self, host, port, bufsize=1024):
# We need one connection to bootstrap
self.bufsize = bufsize
self.conns = {(host, port): Conn(host, port, bufsize)}
self.brokers = {} # broker Id -> BrokerMetadata
self.topics_to_brokers = {} # topic Id -> broker Id
self.load_metadata_for_topics()
def get_conn_for_broker(self, broker):
"Get or create a connection to a broker"
if (broker.host, broker.port) not in self.conns:
self.conns[(broker.host, broker.port)] = Conn(broker.host, broker.port, self.bufsize)
return self.conns[(broker.host, broker.port)]
def next_id(self):
return KafkaConnection.ID_GEN.next()
def load_metadata_for_topics(self, *topics):
"""
Discover brokers and metadata for a set of topics
"""
requestId = self.next_id()
request = KafkaProtocol.encode_metadata_request(KafkaConnection.CLIENT_ID, requestId, *topics)
conn = self.conns.values()[0] # Just get the first one in the list
conn.send(requestId, request)
response = conn.recv(requestId)
(brokers, topics) = KafkaProtocol.decode_metadata_response(response)
log.debug("Broker metadata: %s", brokers)
log.debug("Topic metadata: %s", topics)
self.brokers.update(brokers)
self.topics_to_brokers = {}
for topic, partitions in topics.items():
for partition, meta in partitions.items():
if meta.leader == -1:
log.info("Partition is unassigned, delay for 1s and retry")
time.sleep(1)
self.load_metadata_for_topics(topic)
return
else:
self.topics_to_brokers[TopicAndPartition(topic, partition)] = brokers[meta.leader]
def get_leader_for_partition(self, topic, partition):
key = TopicAndPartition(topic, partition)
if key not in self.topics_to_brokers:
self.load_metadata_for_topics(topic)
return self.topics_to_brokers[key]
def send_produce_request(self, payloads=[], fail_on_error=True, callback=None):
# Group the produce requests by topic+partition
sorted_payloads = sorted(payloads, key=lambda x: (x.topic, x.partition))
grouped_payloads = groupby(sorted_payloads, key=lambda x: (x.topic, x.partition))
# Group the produce requests by which broker they go to
payloads_by_broker = defaultdict(list)
for (topic, partition), payload in grouped_payloads:
payloads_by_broker[self.get_leader_for_partition(topic, partition)] += list(payload)
out = []
# For each broker, send the list of request payloads
for broker, payloads in payloads_by_broker.items():
conn = self.get_conn_for_broker(broker)
requestId = self.next_id()
request = KafkaProtocol.encode_produce_request(KafkaConnection.CLIENT_ID, requestId, payloads)
# Send the request
conn.send(requestId, request)
response = conn.recv(requestId)
for produce_response in KafkaProtocol.decode_produce_response(response):
# Check for errors
if fail_on_error == True and produce_response.error != 0:
raise Exception("ProduceRequest for %s failed with errorcode=%d",
(TopicAndPartition(produce_response.topic, produce_response.partition), produce_response.error))
# Run the callback
if callback is not None:
out.append(callback(produce_response))
else:
out.append(produce_response)
return out
def send_fetch_request(self, payloads=[], fail_on_error=True, callback=None):
"""
Encode and send a FetchRequest
Payloads are grouped by topic and partition so they can be pipelined to the same
brokers.
"""
# Group the produce requests by topic+partition
sorted_payloads = sorted(payloads, key=lambda x: (x.topic, x.partition))
grouped_payloads = groupby(sorted_payloads, key=lambda x: (x.topic, x.partition))
# Group the produce requests by which broker they go to
payloads_by_broker = defaultdict(list)
for (topic, partition), payload in grouped_payloads:
payloads_by_broker[self.get_leader_for_partition(topic, partition)] += list(payload)
out = []
# For each broker, send the list of request payloads
for broker, payloads in payloads_by_broker.items():
conn = self.get_conn_for_broker(broker)
requestId = self.next_id()
request = KafkaProtocol.encode_fetch_request(KafkaConnection.CLIENT_ID, requestId, payloads)
# Send the request
conn.send(requestId, request)
response = conn.recv(requestId)
for fetch_response in KafkaProtocol.decode_fetch_response_iter(response):
# Check for errors
if fail_on_error == True and fetch_response.error != 0:
raise Exception("FetchRequest %s failed with errorcode=%d",
(TopicAndPartition(fetch_response.topic, fetch_response.partition), fetch_response.error))
# Run the callback
if callback is not None:
out.append(callback(fetch_response))
else:
out.append(fetch_response)
return out
if __name__ == "__main__":
# Bootstrap connection
conn = KafkaConnection("localhost", 9092)
# Create some Messages
messages = (KafkaProtocol.create_gzip_message("GZIPPed"),
KafkaProtocol.create_message("not-gzipped"))
# Create a ProduceRequest
produce = ProduceRequest("foo5", 0, messages)
# Send the ProduceRequest
produce_resp = conn.send_produce_request([produce])
# Check for errors
for resp in produce_resp:
if resp.error != 0:
raise Exception("ProduceRequest failed with errorcode=%d", resp.error)
print resp

38
kafka/util.py Normal file
View File

@@ -0,0 +1,38 @@
import struct
def write_int_string(s):
return struct.pack('>i%ds' % len(s), len(s), s)
def write_short_string(s):
return struct.pack('>H%ds' % len(s), len(s), s)
def read_short_string(data, cur):
if len(data) < cur+2:
raise IOError("Not enough data left")
(strLen,) = struct.unpack('>H', data[cur:cur+2])
if strLen == -1:
return (None, cur+2)
cur += 2
if len(data) < cur+strLen:
raise IOError("Not enough data left")
out = data[cur:cur+strLen]
return (out, cur+strLen)
def read_int_string(data, cur):
if len(data) < cur+4:
raise IOError("Not enough data left")
(strLen,) = struct.unpack('>i', data[cur:cur+4])
if strLen == -1:
return (None, cur+4)
cur += 4
if len(data) < cur+strLen:
raise IOError("Not enough data left")
out = data[cur:cur+strLen]
return (out, cur+strLen)
def relative_unpack(fmt, data, cur):
size = struct.calcsize(fmt)
if len(data) < cur+size:
raise IOError("Not enough data left")
out = struct.unpack(fmt, data[cur:cur+size])
return (out, cur+size)