RETIRED, further work has moved to Debian project infrastructure
Go to file
2016-07-16 14:05:50 -07:00
benchmarks Move load_example.py to benchmarks/ 2016-07-16 14:05:50 -07:00
docs Patch Release 1.2.5 2016-07-15 18:20:30 -07:00
kafka Update Sensor time_ms docs; only calculate if needed 2016-07-16 14:05:50 -07:00
servers Attempt to add ssl support to kafka fixtures 2016-04-09 09:24:40 -07:00
test Add initial producer-sender metrics 2016-07-16 14:05:49 -07:00
.gitignore allow client.check_version timeout to be set in Producer and Consumer constructors (#647) 2016-06-29 10:49:28 -07:00
.gitmodules Remove kafka src submodules 2014-08-13 08:14:33 -07:00
.travis.yml Add kafka 0.10.0.0 to test list 2016-05-24 11:02:33 -07:00
AUTHORS.md Update docs and links wrt maintainer change (mumrah -> dpkp) 2015-12-03 12:46:59 -08:00
build_integration.sh Add kafka 0.10.0.0 to test list 2016-05-24 11:02:33 -07:00
CHANGES.md Patch Release 1.2.5 2016-07-15 18:20:30 -07:00
example.py Use KafkaProducer / KafkaConsumer in example.py 2016-02-15 20:21:16 -08:00
LICENSE Update LICENSE 2015-02-03 18:51:32 -05:00
MANIFEST.in Include README.rst, CHANGES.md, and AUTHORS.md in manifest 2015-12-06 16:56:08 -08:00
pylint.rc Ignore _socketobject errors in pylint -- v1.5.4 started throwing no-member errors on python 2.7 2016-01-23 18:39:42 -08:00
README.rst Fix Legacy support url (#712) 2016-06-01 09:23:50 -07:00
setup.cfg Build universal wheels - kafka-python is compatible with both py2 and py3 2016-04-25 13:36:32 -07:00
setup.py Use find_packages() for setup.py 2016-01-01 15:03:36 -08:00
tox.ini Move logging format config to tox.ini to avoid duplicate log capture in pytest output 2016-03-13 09:35:48 -07:00

Kafka Python client

image

image

image

image

image

Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.10 or 0.9), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers, however; for example, fully coordinated consumer groups -- i.e., dynamic partition assignment to multiple consumers in the same group -- requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See <http://kafka-python.readthedocs.org/en/master/compatibility.html> for more details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python's inline help.

>>> pip install kafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

See <http://kafka-python.readthedocs.org/en/master/apidoc/KafkaConsumer.html> for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:

>>> from kafka import KafkaConsumer >>> consumer = KafkaConsumer('my_favorite_topic') >>> for msg in consumer: ... print (msg)

>>> # manually assign the partition list for the consumer >>> from kafka import TopicPartition >>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234') >>> consumer.assign([TopicPartition('foobar', 2)]) >>> msg = next(consumer)

>>> # Deserialize msgpack-encoded values >>> consumer = KafkaConsumer(value_deserializer=msgpack.loads) >>> consumer.subscribe(['msgpackfoo']) >>> for msg in consumer: ... assert isinstance(msg.value, dict)

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See <http://kafka-python.readthedocs.org/en/master/apidoc/KafkaProducer.html> for more details.

>>> from kafka import KafkaProducer >>> producer = KafkaProducer(bootstrap_servers='localhost:1234') >>> for _ in range(100): ... producer.send('foobar', b'some_message_bytes')

>>> # Block until all pending messages are sent >>> producer.flush()

>>> # Block until a single message is sent (or timeout) >>> producer.send('foobar', b'another_message').get(timeout=60)

>>> # Use a key for hashed-partitioning >>> producer.send('foobar', key=b'foo', value=b'bar')

>>> # Serialize json messages >>> import json >>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8')) >>> producer.send('fizzbuzz', {'foo': 'bar'})

>>> # Serialize string keys >>> producer = KafkaProducer(key_serializer=str.encode) >>> producer.send('flipflap', key='ping', value=b'1234')

>>> # Compress messages >>> producer = KafkaProducer(compression_type='gzip') >>> for i in range(1000): ... producer.send('foobar', b'msg %d' % i)

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you must install lz4tools and xxhash (modules may not work on python2.6). To enable snappy compression/decompression install python-snappy (also requires snappy library). See <http://kafka-python.readthedocs.org/en/master/install.html#optional-snappy-install> for more information.

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 0.10).

Low-level

Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer. See <http://kafka-python.readthedocs.io/en/master/simple.html?highlight=SimpleProducer> for API details.