deb-python-kmip/kmip/core/attributes.py
Peter Hamilton ed22fb15f9 Add the DerivationParameters struct
This change adds support for the DerivationParameters struct,
which is needed for DeriveKey support. Unit tests are included to
cover all newly added code.
2017-06-21 11:14:07 -04:00

1506 lines
50 KiB
Python

# Copyright (c) 2014 The Johns Hopkins University/Applied Physics Laboratory
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import six
from kmip.core import enums
from kmip.core.enums import CertificateTypeEnum
from kmip.core.enums import HashingAlgorithm as HashingAlgorithmEnum
from kmip.core.enums import KeyFormatType as KeyFormatTypeEnum
from kmip.core.enums import Tags
from kmip.core.errors import ErrorStrings
from kmip.core.misc import KeyFormatType
from kmip.core.primitives import Boolean
from kmip.core.primitives import ByteString
from kmip.core.primitives import Enumeration
from kmip.core.primitives import Integer
from kmip.core.primitives import Struct
from kmip.core.primitives import TextString
from kmip.core.utils import BytearrayStream
from enum import Enum
# 3.1
class UniqueIdentifier(TextString):
def __init__(self, value=None, tag=Tags.UNIQUE_IDENTIFIER):
super(UniqueIdentifier, self).__init__(value, tag)
class PrivateKeyUniqueIdentifier(UniqueIdentifier):
def __init__(self, value=None):
super(PrivateKeyUniqueIdentifier, self).__init__(
value, Tags.PRIVATE_KEY_UNIQUE_IDENTIFIER)
class PublicKeyUniqueIdentifier(UniqueIdentifier):
def __init__(self, value=None):
super(PublicKeyUniqueIdentifier, self).__init__(
value, Tags.PUBLIC_KEY_UNIQUE_IDENTIFIER)
# 3.2
class Name(Struct):
class NameValue(TextString):
def __init__(self, value=None):
super(Name.NameValue, self).__init__(value, Tags.NAME_VALUE)
def __eq__(self, other):
if isinstance(other, Name.NameValue):
if self.value == other.value:
return True
else:
return False
else:
return NotImplemented
def __repr__(self):
return "{0}(value={1})".format(
type(self).__name__, repr(self.value))
def __str__(self):
return "{0}".format(self.value)
class NameType(Enumeration):
def __init__(self, value=None):
super(Name.NameType, self).__init__(
enums.NameType, value, Tags.NAME_TYPE)
def __eq__(self, other):
if isinstance(other, Name.NameType):
if self.value == other.value:
return True
else:
return False
else:
return NotImplemented
def __repr__(self):
return "{0}(value={1})".format(
type(self).__name__, repr(self.value))
def __str__(self):
return "{0}".format(self.value)
def __init__(self, name_value=None, name_type=None):
super(Name, self).__init__(tag=Tags.NAME)
self.name_value = name_value
self.name_type = name_type
self.validate()
def read(self, istream):
super(Name, self).read(istream)
tstream = BytearrayStream(istream.read(self.length))
# Read the value and type of the name
self.name_value = Name.NameValue()
self.name_type = Name.NameType()
self.name_value.read(tstream)
self.name_type.read(tstream)
self.is_oversized(tstream)
def write(self, ostream):
tstream = BytearrayStream()
# Write the value and type of the name
self.name_value.write(tstream)
self.name_type.write(tstream)
# Write the length and value of the template attribute
self.length = tstream.length()
super(Name, self).write(ostream)
ostream.write(tstream.buffer)
def validate(self):
self.__validate()
def __validate(self):
name = Name.__name__
msg = ErrorStrings.BAD_EXP_RECV
if self.name_value and \
not isinstance(self.name_value, Name.NameValue) and \
not isinstance(self.name_value, str):
member = 'name_value'
raise TypeError(msg.format('{0}.{1}'.format(name, member),
'name_value', type(Name.NameValue),
type(self.name_value)))
if self.name_type and \
not isinstance(self.name_type, Name.NameType) and \
not isinstance(self.name_type, str):
member = 'name_type'
raise TypeError(msg.format('{0}.{1}'.format(name, member),
'name_type', type(Name.NameType),
type(self.name_type)))
@classmethod
def create(cls, name_value, name_type):
'''
Returns a Name object, populated with the given value and type
'''
if isinstance(name_value, Name.NameValue):
value = name_value
elif isinstance(name_value, str):
value = cls.NameValue(name_value)
else:
name = 'Name'
msg = ErrorStrings.BAD_EXP_RECV
member = 'name_value'
raise TypeError(msg.format('{0}.{1}'.format(name, member),
'name_value', type(Name.NameValue),
type(name_value)))
if isinstance(name_type, Name.NameType):
n_type = name_type
elif isinstance(name_type, Enum):
n_type = cls.NameType(name_type)
else:
name = 'Name'
msg = ErrorStrings.BAD_EXP_RECV
member = 'name_type'
raise TypeError(msg.format('{0}.{1}'.format(name, member),
'name_type', type(Name.NameType),
type(name_type)))
return Name(name_value=value,
name_type=n_type)
def __repr__(self):
return "{0}(type={1},value={2})".format(
type(self).__name__,
repr(self.name_type),
repr(self.name_value))
def __str__(self):
return "{0}".format(self.name_value.value)
def __eq__(self, other):
if isinstance(other, Name):
if self.name_value == other.name_value and \
self.name_type == other.name_type:
return True
else:
return False
else:
return NotImplemented
def __ne__(self, other):
return not self.__eq__(other)
# 3.3
class ObjectType(Enumeration):
def __init__(self, value=None):
super(ObjectType, self).__init__(
enums.ObjectType, value, Tags.OBJECT_TYPE)
# 3.4
class CryptographicAlgorithm(Enumeration):
def __init__(self, value=None):
super(CryptographicAlgorithm, self).__init__(
enums.CryptographicAlgorithm, value, Tags.CRYPTOGRAPHIC_ALGORITHM)
# 3.5
class CryptographicLength(Integer):
def __init__(self, value=None):
super(CryptographicLength, self).__init__(
value, Tags.CRYPTOGRAPHIC_LENGTH)
# 3.6
class HashingAlgorithm(Enumeration):
"""
An encodeable wrapper for the HashingAlgorithm enumeration.
Used to specify the algorithm used to compute the Digest of a Managed
Object. See Sections 3.17 and 9.1.3.2.16 of the KMIP v1.1 specification
for more information.
"""
def __init__(self, value=HashingAlgorithmEnum.SHA_256):
"""
Construct a HashingAlgorithm object.
Args:
value (HashingAlgorithm): A HashingAlgorithm enumeration value,
(e.g., HashingAlgorithm.MD5). Optional, defaults to
HashingAlgorithm.SHA_256.
"""
super(HashingAlgorithm, self).__init__(
enums.HashingAlgorithm, value, Tags.HASHING_ALGORITHM)
class CryptographicParameters(Struct):
"""
A set of values for cryptographic operations.
A structure containing optional fields describing certain cryptographic
parameters to be used when performing cryptographic operations with the
associated KMIP object.
"""
def __init__(self,
block_cipher_mode=None,
padding_method=None,
hashing_algorithm=None,
key_role_type=None,
digital_signature_algorithm=None,
cryptographic_algorithm=None,
random_iv=None,
iv_length=None,
tag_length=None,
fixed_field_length=None,
invocation_field_length=None,
counter_length=None,
initial_counter_value=None):
super(CryptographicParameters, self).__init__(
tag=Tags.CRYPTOGRAPHIC_PARAMETERS)
self._block_cipher_mode = None
self._padding_method = None
self._hashing_algorithm = None
self._key_role_type = None
self._digital_signature_algorithm = None
self._cryptographic_algorithm = None
self._random_iv = None
self._iv_length = None
self._tag_length = None
self._fixed_field_length = None
self._invocation_field_length = None
self._counter_length = None
self._initial_counter_value = None
self.block_cipher_mode = block_cipher_mode
self.padding_method = padding_method
self.hashing_algorithm = hashing_algorithm
self.key_role_type = key_role_type
self.digital_signature_algorithm = digital_signature_algorithm
self.cryptographic_algorithm = cryptographic_algorithm
self.random_iv = random_iv
self.iv_length = iv_length
self.tag_length = tag_length
self.fixed_field_length = fixed_field_length
self.invocation_field_length = invocation_field_length
self.counter_length = counter_length
self.initial_counter_value = initial_counter_value
@property
def block_cipher_mode(self):
if self._block_cipher_mode:
return self._block_cipher_mode.value
else:
return None
@block_cipher_mode.setter
def block_cipher_mode(self, value):
if value is None:
self._block_cipher_mode = None
elif isinstance(value, enums.BlockCipherMode):
self._block_cipher_mode = Enumeration(
enums.BlockCipherMode,
value=value,
tag=Tags.BLOCK_CIPHER_MODE
)
else:
raise TypeError(
"block cipher mode must be a BlockCipherMode enumeration"
)
@property
def padding_method(self):
if self._padding_method:
return self._padding_method.value
else:
return None
@padding_method.setter
def padding_method(self, value):
if value is None:
self._padding_method = None
elif isinstance(value, enums.PaddingMethod):
self._padding_method = Enumeration(
enums.PaddingMethod,
value=value,
tag=Tags.PADDING_METHOD
)
else:
raise TypeError(
"padding method must be a PaddingMethod enumeration"
)
@property
def hashing_algorithm(self):
if self._hashing_algorithm:
return self._hashing_algorithm.value
else:
return None
@hashing_algorithm.setter
def hashing_algorithm(self, value):
if value is None:
self._hashing_algorithm = None
elif isinstance(value, enums.HashingAlgorithm):
self._hashing_algorithm = Enumeration(
enums.HashingAlgorithm,
value=value,
tag=Tags.HASHING_ALGORITHM
)
else:
raise TypeError(
"hashing algorithm must be a HashingAlgorithm enumeration"
)
@property
def key_role_type(self):
if self._key_role_type:
return self._key_role_type.value
else:
return None
@key_role_type.setter
def key_role_type(self, value):
if value is None:
self._key_role_type = None
elif isinstance(value, enums.KeyRoleType):
self._key_role_type = Enumeration(
enums.KeyRoleType,
value=value,
tag=Tags.KEY_ROLE_TYPE
)
else:
raise TypeError(
"key role type must be a KeyRoleType enumeration"
)
@property
def digital_signature_algorithm(self):
if self._digital_signature_algorithm:
return self._digital_signature_algorithm.value
else:
return None
@digital_signature_algorithm.setter
def digital_signature_algorithm(self, value):
if value is None:
self._digital_signature_algorithm = None
elif isinstance(value, enums.DigitalSignatureAlgorithm):
self._digital_signature_algorithm = Enumeration(
enums.DigitalSignatureAlgorithm,
value=value,
tag=Tags.DIGITAL_SIGNATURE_ALGORITHM
)
else:
raise TypeError(
"digital signature algorithm must be a "
"DigitalSignatureAlgorithm enumeration"
)
@property
def cryptographic_algorithm(self):
if self._cryptographic_algorithm:
return self._cryptographic_algorithm.value
else:
return None
@cryptographic_algorithm.setter
def cryptographic_algorithm(self, value):
if value is None:
self._cryptographic_algorithm = None
elif isinstance(value, enums.CryptographicAlgorithm):
self._cryptographic_algorithm = Enumeration(
enums.CryptographicAlgorithm,
value=value,
tag=Tags.CRYPTOGRAPHIC_ALGORITHM
)
else:
raise TypeError(
"cryptographic algorithm must be a CryptographicAlgorithm "
"enumeration"
)
@property
def random_iv(self):
if self._random_iv:
return self._random_iv.value
else:
return None
@random_iv.setter
def random_iv(self, value):
if value is None:
self._random_iv = None
elif isinstance(value, bool):
self._random_iv = Boolean(
value=value,
tag=Tags.RANDOM_IV
)
else:
raise TypeError("random iv must be a boolean")
@property
def iv_length(self):
if self._iv_length:
return self._iv_length.value
else:
return None
@iv_length.setter
def iv_length(self, value):
if value is None:
self._iv_length = None
elif isinstance(value, six.integer_types):
self._iv_length = Integer(
value=value,
tag=Tags.IV_LENGTH
)
else:
raise TypeError("iv length must be an integer")
@property
def tag_length(self):
if self._tag_length:
return self._tag_length.value
else:
return None
@tag_length.setter
def tag_length(self, value):
if value is None:
self._tag_length = None
elif isinstance(value, six.integer_types):
self._tag_length = Integer(
value=value,
tag=Tags.TAG_LENGTH
)
else:
raise TypeError("tag length must be an integer")
@property
def fixed_field_length(self):
if self._fixed_field_length:
return self._fixed_field_length.value
else:
return None
@fixed_field_length.setter
def fixed_field_length(self, value):
if value is None:
self._fixed_field_length = None
elif isinstance(value, six.integer_types):
self._fixed_field_length = Integer(
value=value,
tag=Tags.FIXED_FIELD_LENGTH
)
else:
raise TypeError("fixed field length must be an integer")
@property
def invocation_field_length(self):
if self._invocation_field_length:
return self._invocation_field_length.value
else:
return None
@invocation_field_length.setter
def invocation_field_length(self, value):
if value is None:
self._invocation_field_length = None
elif isinstance(value, six.integer_types):
self._invocation_field_length = Integer(
value=value,
tag=Tags.INVOCATION_FIELD_LENGTH
)
else:
raise TypeError("invocation field length must be an integer")
@property
def counter_length(self):
if self._counter_length:
return self._counter_length.value
else:
return None
@counter_length.setter
def counter_length(self, value):
if value is None:
self._counter_length = None
elif isinstance(value, six.integer_types):
self._counter_length = Integer(
value=value,
tag=Tags.COUNTER_LENGTH
)
else:
raise TypeError("counter length must be an integer")
@property
def initial_counter_value(self):
if self._initial_counter_value:
return self._initial_counter_value.value
else:
return None
@initial_counter_value.setter
def initial_counter_value(self, value):
if value is None:
self._initial_counter_value = None
elif isinstance(value, six.integer_types):
self._initial_counter_value = Integer(
value=value,
tag=Tags.INITIAL_COUNTER_VALUE
)
else:
raise TypeError("initial counter value must be an integer")
def read(self, istream):
super(CryptographicParameters, self).read(istream)
tstream = BytearrayStream(istream.read(self.length))
if self.is_tag_next(Tags.BLOCK_CIPHER_MODE, tstream):
self._block_cipher_mode = Enumeration(
enums.BlockCipherMode,
tag=Tags.BLOCK_CIPHER_MODE
)
self._block_cipher_mode.read(tstream)
if self.is_tag_next(Tags.PADDING_METHOD, tstream):
self._padding_method = Enumeration(
enums.PaddingMethod,
tag=Tags.PADDING_METHOD
)
self._padding_method.read(tstream)
if self.is_tag_next(Tags.HASHING_ALGORITHM, tstream):
self._hashing_algorithm = Enumeration(
enums.HashingAlgorithm,
tag=Tags.HASHING_ALGORITHM
)
self._hashing_algorithm.read(tstream)
if self.is_tag_next(Tags.KEY_ROLE_TYPE, tstream):
self._key_role_type = Enumeration(
enums.KeyRoleType,
tag=Tags.KEY_ROLE_TYPE
)
self._key_role_type.read(tstream)
if self.is_tag_next(Tags.DIGITAL_SIGNATURE_ALGORITHM, tstream):
self._digital_signature_algorithm = Enumeration(
enums.DigitalSignatureAlgorithm,
tag=Tags.DIGITAL_SIGNATURE_ALGORITHM
)
self._digital_signature_algorithm.read(tstream)
if self.is_tag_next(Tags.CRYPTOGRAPHIC_ALGORITHM, tstream):
self._cryptographic_algorithm = Enumeration(
enums.CryptographicAlgorithm,
tag=Tags.CRYPTOGRAPHIC_ALGORITHM
)
self._cryptographic_algorithm.read(tstream)
if self.is_tag_next(Tags.RANDOM_IV, tstream):
self._random_iv = Boolean(tag=Tags.RANDOM_IV)
self._random_iv.read(tstream)
if self.is_tag_next(Tags.IV_LENGTH, tstream):
self._iv_length = Integer(tag=Tags.IV_LENGTH)
self._iv_length.read(tstream)
if self.is_tag_next(Tags.TAG_LENGTH, tstream):
self._tag_length = Integer(tag=Tags.TAG_LENGTH)
self._tag_length.read(tstream)
if self.is_tag_next(Tags.FIXED_FIELD_LENGTH, tstream):
self._fixed_field_length = Integer(tag=Tags.FIXED_FIELD_LENGTH)
self._fixed_field_length.read(tstream)
if self.is_tag_next(Tags.INVOCATION_FIELD_LENGTH, tstream):
self._invocation_field_length = Integer(
tag=Tags.INVOCATION_FIELD_LENGTH
)
self._invocation_field_length.read(tstream)
if self.is_tag_next(Tags.COUNTER_LENGTH, tstream):
self._counter_length = Integer(tag=Tags.COUNTER_LENGTH)
self._counter_length.read(tstream)
if self.is_tag_next(Tags.INITIAL_COUNTER_VALUE, tstream):
self._initial_counter_value = Integer(
tag=Tags.INITIAL_COUNTER_VALUE
)
self._initial_counter_value.read(tstream)
self.is_oversized(tstream)
def write(self, ostream):
tstream = BytearrayStream()
if self._block_cipher_mode:
self._block_cipher_mode.write(tstream)
if self._padding_method:
self._padding_method.write(tstream)
if self._hashing_algorithm:
self._hashing_algorithm.write(tstream)
if self._key_role_type:
self._key_role_type.write(tstream)
if self._digital_signature_algorithm:
self._digital_signature_algorithm.write(tstream)
if self._cryptographic_algorithm:
self._cryptographic_algorithm.write(tstream)
if self._random_iv:
self._random_iv.write(tstream)
if self._iv_length:
self._iv_length.write(tstream)
if self._tag_length:
self._tag_length.write(tstream)
if self._fixed_field_length:
self._fixed_field_length.write(tstream)
if self._invocation_field_length:
self._invocation_field_length.write(tstream)
if self._counter_length:
self._counter_length.write(tstream)
if self._initial_counter_value:
self._initial_counter_value.write(tstream)
self.length = tstream.length()
super(CryptographicParameters, self).write(ostream)
ostream.write(tstream.buffer)
def __eq__(self, other):
if isinstance(other, CryptographicParameters):
if self.block_cipher_mode != other.block_cipher_mode:
return False
elif self.padding_method != other.padding_method:
return False
elif self.hashing_algorithm != other.hashing_algorithm:
return False
elif self.key_role_type != other.key_role_type:
return False
elif self.digital_signature_algorithm \
!= other.digital_signature_algorithm:
return False
elif self.cryptographic_algorithm != other.cryptographic_algorithm:
return False
elif self.random_iv != other.random_iv:
return False
elif self.iv_length != other.iv_length:
return False
elif self.tag_length != other.tag_length:
return False
elif self.fixed_field_length != other.fixed_field_length:
return False
elif self.invocation_field_length != other.invocation_field_length:
return False
elif self.counter_length != other.counter_length:
return False
elif self.initial_counter_value != other.initial_counter_value:
return False
else:
return True
def __ne__(self, other):
if isinstance(other, CryptographicParameters):
return not self == other
else:
return NotImplemented
def __repr__(self):
args = ", ".join([
"block_cipher_mode={0}".format(self.block_cipher_mode),
"padding_method={0}".format(self.padding_method),
"hashing_algorithm={0}".format(self.hashing_algorithm),
"key_role_type={0}".format(self.key_role_type),
"digital_signature_algorithm={0}".format(
self.digital_signature_algorithm
),
"cryptographic_algorithm={0}".format(
self.cryptographic_algorithm
),
"random_iv={0}".format(self.random_iv),
"iv_length={0}".format(self.iv_length),
"tag_length={0}".format(self.tag_length),
"fixed_field_length={0}".format(self.fixed_field_length),
"invocation_field_length={0}".format(
self.invocation_field_length
),
"counter_length={0}".format(self.counter_length),
"initial_counter_value={0}".format(self.initial_counter_value)
])
return "CryptographicParameters({0})".format(args)
def __str__(self):
return str({
'block_cipher_mode': self.block_cipher_mode,
'padding_method': self.padding_method,
'hashing_algorithm': self.hashing_algorithm,
'key_role_type': self.key_role_type,
'digital_signature_algorithm': self.digital_signature_algorithm,
'cryptographic_algorithm': self.cryptographic_algorithm,
'random_iv': self.random_iv,
'iv_length': self.iv_length,
'tag_length': self.tag_length,
'fixed_field_length': self.fixed_field_length,
'invocation_field_length': self.invocation_field_length,
'counter_length': self.counter_length,
'initial_counter_value': self.initial_counter_value
})
class CertificateType(Enumeration):
"""
An encodeable wrapper for the CertificateType enumeration.
Used to specify the type of the encoded bytes of a Certificate Managed
Object. See Sections 2.2.1 and 3.8 of the KMIP v1.1 specification for more
information.
"""
def __init__(self, value=CertificateTypeEnum.X_509):
"""
Construct a CertificateType object.
Args:
value (CertificateTypeEnum): A CertificateTypeEnum enumeration
value, (e.g., CertificateTypeEnum.PGP). Optional, defaults to
CertificateTypeEnum.X_509.
"""
super(CertificateType, self).__init__(
enums.CertificateTypeEnum, value, Tags.CERTIFICATE_TYPE)
class DigestValue(ByteString):
"""
A byte string representing the hash value of a Digest.
Used to hold the bytes of the digest hash value. Automatically generated
by the KMIP server, the value is empty if the server does not have access
to the value or encoding of the related Managed Object. See Section 3.17
of the KMIP 1.1 specification for more information.
Attributes:
value: The bytes of the hash.
"""
def __init__(self, value=b''):
"""
Construct a DigestValue object.
Args:
value (bytes): The bytes of the hash. Optional, defaults to
the empty byte string.
"""
super(DigestValue, self).__init__(value, Tags.DIGEST_VALUE)
class Digest(Struct):
"""
A structure storing a hash digest of a Managed Object.
Digests may be calculated for keys, secret data objects, certificates, and
opaque data objects and are generated when the object is created or
registered with the KMIP server. See Section 3.17 of the KMIP 1.1
specification for more information.
Attributes:
hashing_algorithm: The algorithm used to compute the hash digest.
digest_value: The bytes representing the hash digest value.
key_format_type: The type of the key the hash was generated for.
"""
def __init__(self,
hashing_algorithm=None,
digest_value=None,
key_format_type=None):
"""
Construct a Digest object.
Args:
hashing_algorithm (HashingAlgorithm): The hash algorithm used to
compute the value of the digest. Optional, defaults to None.
digest_value (DigestValue): The byte string representing the
value of the hash digest. Optional, defaults to None.
key_format_type (KeyFormatType): The format type of the key the
hash was computed for, if the object in question is a key.
Optional, defaults to None.
"""
super(Digest, self).__init__(Tags.DIGEST)
if hashing_algorithm is None:
self.hashing_algorithm = HashingAlgorithm()
else:
self.hashing_algorithm = hashing_algorithm
if digest_value is None:
self.digest_value = DigestValue()
else:
self.digest_value = digest_value
if key_format_type is None:
self.key_format_type = KeyFormatType()
else:
self.key_format_type = key_format_type
self.validate()
def read(self, istream):
"""
Read the data encoding the Digest object and decode it into its
constituent parts.
Args:
istream (Stream): A data stream containing encoded object data,
supporting a read method; usually a BytearrayStream object.
"""
super(Digest, self).read(istream)
tstream = BytearrayStream(istream.read(self.length))
self.hashing_algorithm.read(tstream)
self.digest_value.read(tstream)
self.key_format_type.read(tstream)
self.is_oversized(tstream)
self.validate()
def write(self, ostream):
"""
Write the data encoding the Digest object to a stream.
Args:
ostream (Stream): A data stream in which to encode object data,
supporting a write method; usually a BytearrayStream object.
"""
tstream = BytearrayStream()
self.hashing_algorithm.write(tstream)
self.digest_value.write(tstream)
self.key_format_type.write(tstream)
self.length = tstream.length()
super(Digest, self).write(ostream)
ostream.write(tstream.buffer)
def validate(self):
"""
Error check the attributes of the Digest object.
"""
self.__validate()
def __validate(self):
# TODO (peter-hamilton) Add checks comparing the length of the digest
# value against the standard length for the stated hashing algorithm.
if not isinstance(self.hashing_algorithm, HashingAlgorithm):
msg = "invalid hashing algorithm"
msg += "; expected {0}, received {1}".format(
HashingAlgorithm, self.hashing_algorithm)
raise TypeError(msg)
if not isinstance(self.digest_value, DigestValue):
msg = "invalid digest value"
msg += "; expected {0}, received {1}".format(
DigestValue, self.digest_value)
raise TypeError(msg)
if not isinstance(self.key_format_type, KeyFormatType):
msg = "invalid key format type"
msg += "; expected {0}, received {1}".format(
KeyFormatType, self.key_format_type)
raise TypeError(msg)
def __eq__(self, other):
if isinstance(other, Digest):
if self.hashing_algorithm != other.hashing_algorithm:
return False
elif self.digest_value != other.digest_value:
return False
elif self.key_format_type != other.key_format_type:
return False
else:
return True
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, Digest):
return not (self == other)
else:
return NotImplemented
def __repr__(self):
hashing_algorithm = "hashing_algorithm={0}".format(
repr(self.hashing_algorithm))
digest_value = "digest_value={0}".format(
repr(self.digest_value))
key_format_type = "key_format_type={0}".format(
repr(self.key_format_type))
return "Digest({0}, {1}, {2})".format(
hashing_algorithm, digest_value, key_format_type)
def __str__(self):
return str(self.digest_value)
@classmethod
def create(cls,
hashing_algorithm=HashingAlgorithmEnum.SHA_256,
digest_value=b'',
key_format_type=KeyFormatTypeEnum.RAW):
"""
Construct a Digest object from provided digest values.
Args:
hashing_algorithm (HashingAlgorithm): An enumeration representing
the hash algorithm used to compute the digest. Optional,
defaults to HashingAlgorithm.SHA_256.
digest_value (byte string): The bytes of the digest hash. Optional,
defaults to the empty byte string.
key_format_type (KeyFormatType): An enumeration representing the
format of the key corresponding to the digest. Optional,
defaults to KeyFormatType.RAW.
Returns:
Digest: The newly created Digest.
Example:
>>> x = Digest.create(HashingAlgorithm.MD5, b'\x00',
... KeyFormatType.RAW)
>>> x.hashing_algorithm
HashingAlgorithm(value=HashingAlgorithm.MD5)
>>> x.digest_value
DigestValue(value=bytearray(b'\x00'))
>>> x.key_format_type
KeyFormatType(value=KeyFormatType.RAW)
"""
algorithm = HashingAlgorithm(hashing_algorithm)
value = DigestValue(bytearray(digest_value))
format_type = KeyFormatType(key_format_type)
return Digest(hashing_algorithm=algorithm,
digest_value=value,
key_format_type=format_type)
# 3.18
class OperationPolicyName(TextString):
def __init__(self, value=None):
super(OperationPolicyName, self).__init__(
value, Tags.OPERATION_POLICY_NAME)
# 3.19
class CryptographicUsageMask(Integer):
ENUM_TYPE = enums.CryptographicUsageMask
def __init__(self, value=None):
super(CryptographicUsageMask, self).__init__(
value, Tags.CRYPTOGRAPHIC_USAGE_MASK)
class State(Enumeration):
def __init__(self, value=None):
super(State, self).__init__(enums.State, value, Tags.STATE)
# 3.33
class ObjectGroup(TextString):
def __init__(self, value=None):
super(ObjectGroup, self).__init__(value, Tags.OBJECT_GROUP)
# 3.36
class ApplicationNamespace(TextString):
"""
The name of a namespace supported by the KMIP server.
A part of ApplicationSpecificInformation, sets of these are also potential
responses to a Query request. See Sections 3.36 and 4.25 of the KMIP v1.1
specification for more information.
"""
def __init__(self, value=None):
"""
Construct an ApplicationNamespace object.
Args:
value (str): A string representing a namespace. Optional, defaults
to None.
"""
super(ApplicationNamespace, self).__init__(
value, Tags.APPLICATION_NAMESPACE)
class ApplicationData(TextString):
"""
A string representing data specific to an application namespace.
A part of ApplicationSpecificInformation. See Section 3.36 of the KMIP v1.1
specification for more information.
"""
def __init__(self, value=None):
"""
Construct an ApplicationData object.
Args:
value (str): A string representing data for a particular namespace.
Optional, defaults to None.
"""
super(ApplicationData, self).__init__(value, Tags.APPLICATION_DATA)
class ApplicationSpecificInformation(Struct):
"""
A structure used to store data specific to the applications that use a
Managed Object.
An attribute of Managed Objects, it may be specified during the creation or
modification of any server Managed Object.
Attributes:
application_namespace: The name of a namespace supported by the server.
application_data: String data relevant to the specified namespace.
See Section 3.36 of the KMIP v1.1 specification for more information.
"""
def __init__(self, application_namespace=None, application_data=None):
"""
Construct an ApplicationSpecificInformation object.
Args:
application_namespace (ApplicationNamespace): The name of a
namespace supported by the server. Optional, defaults to None.
application_data (ApplicationData): String data relevant to the
specified namespace. Optional, defaults to None.
"""
super(ApplicationSpecificInformation, self).__init__(
Tags.APPLICATION_SPECIFIC_INFORMATION)
if application_namespace is None:
self.application_namespace = ApplicationNamespace()
else:
self.application_namespace = application_namespace
if application_data is None:
self.application_data = ApplicationData()
else:
self.application_data = application_data
self.validate()
def read(self, istream):
"""
Read the data encoding the ApplicationSpecificInformation object and
decode it into its constituent parts.
Args:
istream (Stream): A data stream containing encoded object data,
supporting a read method; usually a BytearrayStream object.
"""
super(ApplicationSpecificInformation, self).read(istream)
tstream = BytearrayStream(istream.read(self.length))
self.application_namespace.read(tstream)
self.application_data.read(tstream)
self.is_oversized(tstream)
self.validate()
def write(self, ostream):
"""
Write the data encoding the ApplicationSpecificInformation object to a
stream.
Args:
ostream (Stream): A data stream in which to encode object data,
supporting a write method; usually a BytearrayStream object.
"""
tstream = BytearrayStream()
self.application_namespace.write(tstream)
self.application_data.write(tstream)
self.length = tstream.length()
super(ApplicationSpecificInformation, self).write(ostream)
ostream.write(tstream.buffer)
def validate(self):
"""
Error check the types of the different attributes of the
ApplicationSpecificInformation object.
"""
self.__validate()
def __repr__(self):
application_namespace = "application_namespace={0}".format(
repr(self.application_namespace)
)
application_data = "application_data={0}".format(
repr(self.application_data)
)
return "ApplicationSpecificInformation({0}, {1})".format(
application_namespace,
application_data
)
def __str__(self):
return str({
"application_namespace": str(self.application_namespace),
"application_data": str(self.application_data)
})
def __eq__(self, other):
if isinstance(other, ApplicationSpecificInformation):
if self.application_namespace != other.application_namespace:
return False
if self.application_data != other.application_data:
return False
return True
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, ApplicationSpecificInformation):
return not self.__eq__(other)
else:
return NotImplemented
def __validate(self):
if not isinstance(self.application_namespace, ApplicationNamespace):
msg = "invalid application namespace"
msg += "; expected {0}, received {1}".format(
ApplicationNamespace, self.application_namespace)
raise TypeError(msg)
if not isinstance(self.application_data, ApplicationData):
msg = "invalid application data"
msg += "; expected {0}, received {1}".format(
ApplicationData, self.application_data)
raise TypeError(msg)
@classmethod
def create(cls, application_namespace, application_data):
"""
Construct an ApplicationSpecificInformation object from provided data
and namespace values.
Args:
application_namespace (str): The name of the application namespace.
application_data (str): Application data related to the namespace.
Returns:
ApplicationSpecificInformation: The newly created set of
application information.
Example:
>>> x = ApplicationSpecificInformation.create('namespace', 'data')
>>> x.application_namespace.value
'namespace'
>>> x.application_data.value
'data'
"""
namespace = ApplicationNamespace(application_namespace)
data = ApplicationData(application_data)
return ApplicationSpecificInformation(
application_namespace=namespace, application_data=data)
# 3.37
class ContactInformation(TextString):
def __init__(self, value=None):
super(ContactInformation, self).__init__(
value, Tags.CONTACT_INFORMATION)
# 3.39
# TODO (peter-hamilton) A CustomAttribute TextString is not sufficient to
# TODO (peter-hamilton) cover all potential custom attributes. This is a
# TODO (peter-hamilton) temporary stopgap.
class CustomAttribute(TextString):
def __init__(self, value=None):
super(CustomAttribute, self).__init__(value, Tags.ATTRIBUTE_VALUE)
class DerivationParameters(Struct):
"""
A set of values needed for key or secret derivation.
A structure containing optional fields describing certain cryptographic
parameters to be used when performing key or secret derivation operations.
"""
def __init__(self,
cryptographic_parameters=None,
initialization_vector=None,
derivation_data=None,
salt=None,
iteration_count=None):
"""
Construct a DerivationParameters struct.
Args:
cryptographic_parameters (CryptographicParameters): A
CryptographicParameters struct containing the settings for
the derivation process. Optional, defaults to None. If not
included, the CryptographicParameters associated with the
managed object will be used instead.
initialization_vector (bytes): The IV value to be used with the
pseudo-random derivation function (PRF). Optional depending
on the PRF, defaults to None.
derivation_data (bytes): A data component to be used instead of
or with a derivation key to derive the new cryptographic
object. Optional, defaults to None.
salt (bytes): A salt value required by the PBKDF2 algorithm.
Optional, defaults to None.
iteration_count (bytes): An iteration count value required by
the PBKDF2 algorithm. Optional, defaults to None.
"""
super(DerivationParameters, self).__init__(
tag=Tags.DERIVATION_PARAMETERS
)
self._cryptographic_parameters = None
self._initialization_vector = None
self._derivation_data = None
self._salt = None
self._iteration_count = None
self.cryptographic_parameters = cryptographic_parameters
self.initialization_vector = initialization_vector
self.derivation_data = derivation_data
self.salt = salt
self.iteration_count = iteration_count
@property
def cryptographic_parameters(self):
return self._cryptographic_parameters
@cryptographic_parameters.setter
def cryptographic_parameters(self, value):
if value is None:
self._cryptographic_parameters = None
elif isinstance(value, CryptographicParameters):
self._cryptographic_parameters = value
else:
raise TypeError(
"cryptographic parameters must be a CryptographicParameters "
"struct"
)
@property
def initialization_vector(self):
if self._initialization_vector:
return self._initialization_vector.value
else:
return None
@initialization_vector.setter
def initialization_vector(self, value):
if value is None:
self._initialization_vector = None
elif isinstance(value, six.binary_type):
self._initialization_vector = ByteString(
value=value,
tag=enums.Tags.INITIALIZATION_VECTOR
)
else:
raise TypeError("initialization vector must be bytes")
@property
def derivation_data(self):
if self._derivation_data:
return self._derivation_data.value
else:
return None
@derivation_data.setter
def derivation_data(self, value):
if value is None:
self._derivation_data = None
elif isinstance(value, six.binary_type):
self._derivation_data = ByteString(
value=value,
tag=enums.Tags.DERIVATION_DATA
)
else:
raise TypeError("derivation data must be bytes")
@property
def salt(self):
if self._salt:
return self._salt.value
else:
return None
@salt.setter
def salt(self, value):
if value is None:
self._salt = None
elif isinstance(value, six.binary_type):
self._salt = ByteString(
value=value,
tag=enums.Tags.SALT
)
else:
raise TypeError("salt must be bytes")
@property
def iteration_count(self):
if self._iteration_count:
return self._iteration_count.value
else:
return None
@iteration_count.setter
def iteration_count(self, value):
if value is None:
self._iteration_count = None
elif isinstance(value, six.integer_types):
self._iteration_count = Integer(
value=value,
tag=Tags.ITERATION_COUNT
)
else:
raise TypeError("iteration count must be an integer")
def read(self, input_stream):
"""
Read the data encoding the DerivationParameters struct and decode it
into its constituent parts.
Args:
input_stream (stream): A data stream containing encoded object
data, supporting a read method; usually a BytearrayStream
object.
"""
super(DerivationParameters, self).read(input_stream)
local_stream = BytearrayStream(input_stream.read(self.length))
if self.is_tag_next(
enums.Tags.CRYPTOGRAPHIC_PARAMETERS,
local_stream
):
self._cryptographic_parameters = CryptographicParameters()
self._cryptographic_parameters.read(local_stream)
if self.is_tag_next(enums.Tags.INITIALIZATION_VECTOR, local_stream):
self._initialization_vector = ByteString(
tag=enums.Tags.INITIALIZATION_VECTOR
)
self._initialization_vector.read(local_stream)
if self.is_tag_next(enums.Tags.DERIVATION_DATA, local_stream):
self._derivation_data = ByteString(tag=enums.Tags.DERIVATION_DATA)
self._derivation_data.read(local_stream)
if self.is_tag_next(enums.Tags.SALT, local_stream):
self._salt = ByteString(tag=enums.Tags.SALT)
self._salt.read(local_stream)
if self.is_tag_next(Tags.ITERATION_COUNT, local_stream):
self._iteration_count = Integer(tag=Tags.ITERATION_COUNT)
self._iteration_count.read(local_stream)
self.is_oversized(local_stream)
def write(self, output_stream):
"""
Write the data encoding the DerivationParameters struct to a stream.
Args:
output_stream (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
"""
local_stream = BytearrayStream()
if self._cryptographic_parameters:
self._cryptographic_parameters.write(local_stream)
if self._initialization_vector:
self._initialization_vector.write(local_stream)
if self._derivation_data:
self._derivation_data.write(local_stream)
if self._salt:
self._salt.write(local_stream)
if self._iteration_count:
self._iteration_count.write(local_stream)
self.length = local_stream.length()
super(DerivationParameters, self).write(output_stream)
output_stream.write(local_stream.buffer)
def __eq__(self, other):
if isinstance(other, DerivationParameters):
if self.cryptographic_parameters != other.cryptographic_parameters:
return False
elif self.initialization_vector != other.initialization_vector:
return False
elif self.derivation_data != other.derivation_data:
return False
elif self.salt != other.salt:
return False
elif self.iteration_count != other.iteration_count:
return False
else:
return True
def __ne__(self, other):
if isinstance(other, DerivationParameters):
return not self == other
else:
return NotImplemented
def __repr__(self):
args = ", ".join([
"cryptographic_parameters={0}".format(
repr(self.cryptographic_parameters)
),
"initialization_vector={0}".format(self.initialization_vector),
"derivation_data={0}".format(self.derivation_data),
"salt={0}".format(self.salt),
"iteration_count={0}".format(
self.iteration_count
)
])
return "DerivationParameters({0})".format(args)
def __str__(self):
return str({
'cryptographic_parameters': self.cryptographic_parameters,
'initialization_vector': self.initialization_vector,
'derivation_data': self.derivation_data,
'salt': self.salt,
'iteration_count': self.iteration_count
})