#!/usr/bin/python2.4 # -*- coding: utf-8 -*- # # Copyright (C) 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple command-line sample for the Google Prediction API Command-line application that trains on your input data. This sample does the same thing as the Hello Prediction! example. You might want to run the setup.sh script to load the sample data to Google Storage. Usage: $ python prediction.py --object_name="bucket/object" --id="model_id" You can also get help on all the command-line flags the program understands by running: $ python prediction.py --help To get detailed log output run: $ python prediction.py --logging_level=DEBUG """ __author__ = ('jcgregorio@google.com (Joe Gregorio), ' 'marccohen@google.com (Marc Cohen)') import apiclient.errors import gflags import httplib2 import logging import os import pprint import sys import time from apiclient.discovery import build from oauth2client.file import Storage from oauth2client.client import AccessTokenRefreshError from oauth2client.client import flow_from_clientsecrets from oauth2client.tools import run FLAGS = gflags.FLAGS # CLIENT_SECRETS, name of a file containing the OAuth 2.0 information for this # application, including client_id and client_secret, which are found # on the API Access tab on the Google APIs # Console CLIENT_SECRETS = 'samples/prediction/client_secrets.json' # Helpful message to display in the browser if the CLIENT_SECRETS file # is missing. MISSING_CLIENT_SECRETS_MESSAGE = """ WARNING: Please configure OAuth 2.0 To make this sample run you will need to populate the client_secrets.json file found at: %s with information from the APIs Console . """ % os.path.join(os.path.dirname(__file__), CLIENT_SECRETS) # Set up a Flow object to be used if we need to authenticate. FLOW = flow_from_clientsecrets(CLIENT_SECRETS, scope='https://www.googleapis.com/auth/prediction', message=MISSING_CLIENT_SECRETS_MESSAGE) # The gflags module makes defining command-line options easy for # applications. Run this program with the '--help' argument to see # all the flags that it understands. gflags.DEFINE_enum('logging_level', 'ERROR', ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], 'Set the level of logging detail.') gflags.DEFINE_string('object_name', None, 'Full Google Storage path of csv data (ex bucket/object)') gflags.MarkFlagAsRequired('object_name') gflags.DEFINE_string('id', None, 'Model Id of your choosing to name trained model') gflags.MarkFlagAsRequired('id') # Time to wait (in seconds) between successive checks of training status. SLEEP_TIME = 10 def print_header(line): '''Format and print header block sized to length of line''' header_str = '=' header_line = header_str * len(line) print '\n' + header_line print line print header_line def main(argv): # Let the gflags module process the command-line arguments. try: argv = FLAGS(argv) except gflags.FlagsError, e: print '%s\\nUsage: %s ARGS\\n%s' % (e, argv[0], FLAGS) sys.exit(1) # Set the logging according to the command-line flag logging.getLogger().setLevel(getattr(logging, FLAGS.logging_level)) # If the Credentials don't exist or are invalid run through the native client # flow. The Storage object will ensure that if successful the good # Credentials will get written back to a file. storage = Storage('prediction.dat') credentials = storage.get() if credentials is None or credentials.invalid: credentials = run(FLOW, storage) # Create an httplib2.Http object to handle our HTTP requests and authorize it # with our good Credentials. http = httplib2.Http() http = credentials.authorize(http) try: # Get access to the Prediction API. service = build("prediction", "v1.5", http=http) papi = service.trainedmodels() # List models. print_header('Fetching list of first ten models') result = papi.list(maxResults=10).execute() print 'List results:' pprint.pprint(result) # Start training request on a data set. print_header('Submitting model training request') body = {'id': FLAGS.id, 'storageDataLocation': FLAGS.object_name} start = papi.insert(body=body).execute() print 'Training results:' pprint.pprint(start) # Wait for the training to complete. print_header('Waiting for training to complete') while True: status = papi.get(id=FLAGS.id).execute() state = status['trainingStatus'] print 'Training state: ' + state if state == 'DONE': break elif state == 'RUNNING': time.sleep(SLEEP_TIME) continue else: raise Exception('Training Error: ' + state) # Job has completed. print 'Training completed:' pprint.pprint(status) break # Describe model. print_header('Fetching model description') result = papi.analyze(id=FLAGS.id).execute() print 'Analyze results:' pprint.pprint(result) # Make a prediction using the newly trained model. print_header('Making a prediction') body = {'input': {'csvInstance': ["mucho bueno"]}} result = papi.predict(body=body, id=FLAGS.id).execute() print 'Prediction results...' pprint.pprint(result) # Delete model. print_header('Deleting model') result = papi.delete(id=FLAGS.id).execute() print 'Model deleted.' except AccessTokenRefreshError: print ("The credentials have been revoked or expired, please re-run" "the application to re-authorize") if __name__ == '__main__': main(sys.argv)