Files
deb-python-pint/pint/testsuite/test_quantity.py
bors[bot] 3da8adaa51 Merge #286
286: Make Quantity and UnitContainer objects hashable. r=hgrecco
2017-06-15 01:45:27 +00:00

1253 lines
57 KiB
Python

# -*- coding: utf-8 -*-
from __future__ import division, unicode_literals, print_function, absolute_import
import copy
import datetime
import math
import operator as op
import warnings
from pint import DimensionalityError, OffsetUnitCalculusError, UnitRegistry
from pint.unit import UnitsContainer
from pint.compat import string_types, PYTHON3, np
from pint.testsuite import QuantityTestCase, helpers
from pint.testsuite.parameterized import ParameterizedTestCase
class TestQuantity(QuantityTestCase):
FORCE_NDARRAY = False
def test_quantity_creation(self):
for args in ((4.2, 'meter'),
(4.2, UnitsContainer(meter=1)),
(4.2, self.ureg.meter),
('4.2*meter', ),
('4.2/meter**(-1)', ),
(self.Q_(4.2, 'meter'),)):
x = self.Q_(*args)
self.assertEqual(x.magnitude, 4.2)
self.assertEqual(x.units, UnitsContainer(meter=1))
x = self.Q_(4.2, UnitsContainer(length=1))
y = self.Q_(x)
self.assertEqual(x.magnitude, y.magnitude)
self.assertEqual(x.units, y.units)
self.assertIsNot(x, y)
x = self.Q_(4.2, None)
self.assertEqual(x.magnitude, 4.2)
self.assertEqual(x.units, UnitsContainer())
with self.capture_log() as buffer:
self.assertEqual(4.2 * self.ureg.meter, self.Q_(4.2, 2 * self.ureg.meter))
self.assertEqual(len(buffer), 1)
def test_quantity_bool(self):
self.assertTrue(self.Q_(1, None))
self.assertTrue(self.Q_(1, 'meter'))
self.assertFalse(self.Q_(0, None))
self.assertFalse(self.Q_(0, 'meter'))
def test_quantity_comparison(self):
x = self.Q_(4.2, 'meter')
y = self.Q_(4.2, 'meter')
z = self.Q_(5, 'meter')
j = self.Q_(5, 'meter*meter')
# identity for single object
self.assertTrue(x == x)
self.assertFalse(x != x)
# identity for multiple objects with same value
self.assertTrue(x == y)
self.assertFalse(x != y)
self.assertTrue(x <= y)
self.assertTrue(x >= y)
self.assertFalse(x < y)
self.assertFalse(x > y)
self.assertFalse(x == z)
self.assertTrue(x != z)
self.assertTrue(x < z)
self.assertTrue(z != j)
self.assertNotEqual(z, j)
self.assertEqual(self.Q_(0, 'meter'), self.Q_(0, 'centimeter'))
self.assertNotEqual(self.Q_(0, 'meter'), self.Q_(0, 'second'))
self.assertLess(self.Q_(10, 'meter'), self.Q_(5, 'kilometer'))
def test_quantity_comparison_convert(self):
self.assertEqual(self.Q_(1000, 'millimeter'), self.Q_(1, 'meter'))
self.assertEqual(self.Q_(1000, 'millimeter/min'), self.Q_(1000/60, 'millimeter/s'))
def test_quantity_repr(self):
x = self.Q_(4.2, UnitsContainer(meter=1))
self.assertEqual(str(x), '4.2 meter')
self.assertEqual(repr(x), "<Quantity(4.2, 'meter')>")
def test_quantity_hash(self):
x = self.Q_(4.2, 'meter')
x2 = self.Q_(4200, 'millimeter')
y = self.Q_(2, 'second')
z = self.Q_(0.5, 'hertz')
self.assertEqual(hash(x), hash(x2))
# Dimensionless equality
self.assertEqual(hash(y * z), hash(1.0))
# Dimensionless equality from a different unit registry
ureg2 = UnitRegistry(force_ndarray=self.FORCE_NDARRAY)
y2 = ureg2.Quantity(2, 'second')
z2 = ureg2.Quantity(0.5, 'hertz')
self.assertEqual(hash(y * z), hash(y2 * z2))
def test_quantity_format(self):
x = self.Q_(4.12345678, UnitsContainer(meter=2, kilogram=1, second=-1))
for spec, result in (('{0}', str(x)), ('{0!s}', str(x)), ('{0!r}', repr(x)),
('{0.magnitude}', str(x.magnitude)), ('{0.units}', str(x.units)),
('{0.magnitude!s}', str(x.magnitude)), ('{0.units!s}', str(x.units)),
('{0.magnitude!r}', repr(x.magnitude)), ('{0.units!r}', repr(x.units)),
('{0:.4f}', '{0:.4f} {1!s}'.format(x.magnitude, x.units)),
('{0:L}', r'4.12345678\ \frac{\mathrm{kilogram} \cdot \mathrm{meter}^{2}}{\mathrm{second}}'),
('{0:P}', '4.12345678 kilogram·meter²/second'),
('{0:H}', '4.12345678 kilogram meter<sup>2</sup>/second'),
('{0:C}', '4.12345678 kilogram*meter**2/second'),
('{0:~}', '4.12345678 kg * m ** 2 / s'),
('{0:L~}', r'4.12345678\ \frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{s}}'),
('{0:P~}', '4.12345678 kg·m²/s'),
('{0:H~}', '4.12345678 kg m<sup>2</sup>/s'),
('{0:C~}', '4.12345678 kg*m**2/s'),
('{0:Lx}', r'\SI[]{4.12345678}{\kilo\gram\meter\squared\per\second}'),
):
self.assertEqual(spec.format(x), result)
# Check the special case that prevents e.g. '3 1 / second'
x = self.Q_(3, UnitsContainer(second=-1))
self.assertEqual('{0}'.format(x), '3 / second')
def test_format_compact(self):
q1 = (200e-9 * self.ureg.s).to_compact()
q1b = self.Q_(200., 'nanosecond')
self.assertAlmostEqual(q1.magnitude, q1b.magnitude)
self.assertEqual(q1.units, q1b.units)
q2 = (1e-2 * self.ureg('kg m/s^2')).to_compact('N')
q2b = self.Q_(10., 'millinewton')
self.assertEqual(q2.magnitude, q2b.magnitude)
self.assertEqual(q2.units, q2b.units)
q3 = (-1000.0 * self.ureg('meters')).to_compact()
q3b = self.Q_(-1., 'kilometer')
self.assertEqual(q3.magnitude, q3b.magnitude)
self.assertEqual(q3.units, q3b.units)
self.assertEqual('{0:#.1f}'.format(q1), '{0}'.format(q1b))
self.assertEqual('{0:#.1f}'.format(q2), '{0}'.format(q2b))
self.assertEqual('{0:#.1f}'.format(q3), '{0}'.format(q3b))
def test_default_formatting(self):
ureg = UnitRegistry()
x = ureg.Quantity(4.12345678, UnitsContainer(meter=2, kilogram=1, second=-1))
for spec, result in (('L', r'4.12345678\ \frac{\mathrm{kilogram} \cdot \mathrm{meter}^{2}}{\mathrm{second}}'),
('P', '4.12345678 kilogram·meter²/second'),
('H', '4.12345678 kilogram meter<sup>2</sup>/second'),
('C', '4.12345678 kilogram*meter**2/second'),
('~', '4.12345678 kg * m ** 2 / s'),
('L~', r'4.12345678\ \frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{s}}'),
('P~', '4.12345678 kg·m²/s'),
('H~', '4.12345678 kg m<sup>2</sup>/s'),
('C~', '4.12345678 kg*m**2/s'),
):
ureg.default_format = spec
self.assertEqual('{0}'.format(x), result)
def test_to_base_units(self):
x = self.Q_('1*inch')
self.assertQuantityAlmostEqual(x.to_base_units(), self.Q_(0.0254, 'meter'))
x = self.Q_('1*inch*inch')
self.assertQuantityAlmostEqual(x.to_base_units(), self.Q_(0.0254 ** 2.0, 'meter*meter'))
x = self.Q_('1*inch/minute')
self.assertQuantityAlmostEqual(x.to_base_units(), self.Q_(0.0254 / 60., 'meter/second'))
def test_convert(self):
x = self.Q_('2*inch')
self.assertQuantityAlmostEqual(x.to('meter'), self.Q_(2. * 0.0254, 'meter'))
x = self.Q_('2*meter')
self.assertQuantityAlmostEqual(x.to('inch'), self.Q_(2. / 0.0254, 'inch'))
x = self.Q_('2*sidereal_second')
self.assertQuantityAlmostEqual(x.to('second'), self.Q_(1.994539133 , 'second'))
x = self.Q_('2.54*centimeter/second')
self.assertQuantityAlmostEqual(x.to('inch/second'), self.Q_(1, 'inch/second'))
x = self.Q_('2.54*centimeter')
self.assertQuantityAlmostEqual(x.to('inch').magnitude, 1)
self.assertQuantityAlmostEqual(self.Q_(2, 'second').to('millisecond').magnitude, 2000)
@helpers.requires_numpy()
def test_convert(self):
# Conversions with single units take a different codepath than
# Conversions with more than one unit.
src_dst1 = UnitsContainer(meter=1), UnitsContainer(inch=1)
src_dst2 = UnitsContainer(meter=1, second=-1), UnitsContainer(inch=1, minute=-1)
for src, dst in (src_dst1, src_dst2):
a = np.ones((3, 1))
ac = np.ones((3, 1))
q = self.Q_(a, src)
qac = self.Q_(ac, src).to(dst)
r = q.to(dst)
self.assertQuantityAlmostEqual(qac, r)
self.assertIsNot(r, q)
self.assertIsNot(r._magnitude, a)
@helpers.requires_numpy()
def test_retain_unit(self):
# Test that methods correctly retain units and do not degrade into
# ordinary ndarrays. List contained in __copy_units.
a = np.ones((3, 2))
q = self.Q_(a, "km")
self.assertEqual(q.u, q.reshape(2, 3).u)
self.assertEqual(q.u, q.swapaxes(0, 1).u)
self.assertEqual(q.u, q.mean().u)
self.assertEqual(q.u, np.compress((q==q[0,0]).any(0), q).u)
def test_context_attr(self):
self.assertEqual(self.ureg.meter, self.Q_(1, 'meter'))
def test_both_symbol(self):
self.assertEqual(self.Q_(2, 'ms'), self.Q_(2, 'millisecond'))
self.assertEqual(self.Q_(2, 'cm'), self.Q_(2, 'centimeter'))
def test_dimensionless_units(self):
self.assertAlmostEqual(self.Q_(360, 'degree').to('radian').magnitude, 2 * math.pi)
self.assertAlmostEqual(self.Q_(2 * math.pi, 'radian'), self.Q_(360, 'degree'))
self.assertEqual(self.Q_(1, 'radian').dimensionality, UnitsContainer())
self.assertTrue(self.Q_(1, 'radian').dimensionless)
self.assertFalse(self.Q_(1, 'radian').unitless)
self.assertEqual(self.Q_(1, 'meter')/self.Q_(1, 'meter'), 1)
self.assertEqual((self.Q_(1, 'meter')/self.Q_(1, 'mm')).to(''), 1000)
self.assertEqual(self.Q_(10) // self.Q_(360, 'degree'), 1)
self.assertEqual(self.Q_(400, 'degree') // self.Q_(2 * math.pi), 1)
self.assertEqual(self.Q_(400, 'degree') // (2 * math.pi), 1)
self.assertEqual(7 // self.Q_(360, 'degree'), 1)
def test_offset(self):
self.assertQuantityAlmostEqual(self.Q_(0, 'kelvin').to('kelvin'), self.Q_(0, 'kelvin'))
self.assertQuantityAlmostEqual(self.Q_(0, 'degC').to('kelvin'), self.Q_(273.15, 'kelvin'))
self.assertQuantityAlmostEqual(self.Q_(0, 'degF').to('kelvin'), self.Q_(255.372222, 'kelvin'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'kelvin').to('kelvin'), self.Q_(100, 'kelvin'))
self.assertQuantityAlmostEqual(self.Q_(100, 'degC').to('kelvin'), self.Q_(373.15, 'kelvin'))
self.assertQuantityAlmostEqual(self.Q_(100, 'degF').to('kelvin'), self.Q_(310.92777777, 'kelvin'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(0, 'kelvin').to('degC'), self.Q_(-273.15, 'degC'))
self.assertQuantityAlmostEqual(self.Q_(100, 'kelvin').to('degC'), self.Q_(-173.15, 'degC'))
self.assertQuantityAlmostEqual(self.Q_(0, 'kelvin').to('degF'), self.Q_(-459.67, 'degF'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'kelvin').to('degF'), self.Q_(-279.67, 'degF'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(32, 'degF').to('degC'), self.Q_(0, 'degC'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'degC').to('degF'), self.Q_(212, 'degF'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(54, 'degF').to('degC'), self.Q_(12.2222, 'degC'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'degC').to('degF'), self.Q_(53.6, 'degF'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'kelvin').to('degC'), self.Q_(-261.15, 'degC'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'degC').to('kelvin'), self.Q_(285.15, 'kelvin'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'kelvin').to('degR'), self.Q_(21.6, 'degR'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'degR').to('kelvin'), self.Q_(6.66666667, 'kelvin'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'degC').to('degR'), self.Q_(513.27, 'degR'), atol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12, 'degR').to('degC'), self.Q_(-266.483333, 'degC'), atol=0.01)
def test_offset_delta(self):
self.assertQuantityAlmostEqual(self.Q_(0, 'delta_degC').to('kelvin'), self.Q_(0, 'kelvin'))
self.assertQuantityAlmostEqual(self.Q_(0, 'delta_degF').to('kelvin'), self.Q_(0, 'kelvin'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'kelvin').to('delta_degC'), self.Q_(100, 'delta_degC'))
self.assertQuantityAlmostEqual(self.Q_(100, 'kelvin').to('delta_degF'), self.Q_(180, 'delta_degF'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'delta_degF').to('kelvin'), self.Q_(55.55555556, 'kelvin'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'delta_degC').to('delta_degF'), self.Q_(180, 'delta_degF'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(100, 'delta_degF').to('delta_degC'), self.Q_(55.55555556, 'delta_degC'), rtol=0.01)
self.assertQuantityAlmostEqual(self.Q_(12.3, 'delta_degC').to('delta_degF'), self.Q_(22.14, 'delta_degF'), rtol=0.01)
def test_pickle(self):
import pickle
def pickle_test(q):
self.assertEqual(q, pickle.loads(pickle.dumps(q)))
pickle_test(self.Q_(32, ''))
pickle_test(self.Q_(2.4, ''))
pickle_test(self.Q_(32, 'm/s'))
pickle_test(self.Q_(2.4, 'm/s'))
class TestQuantityToCompact(QuantityTestCase):
def assertQuantityAlmostIdentical(self, q1, q2):
self.assertEqual(q1.units, q2.units)
self.assertAlmostEqual(q1.magnitude, q2.magnitude)
def compareQuantity_compact(self, q, expected_compact, unit=None):
self.assertQuantityAlmostIdentical(q.to_compact(unit=unit),
expected_compact)
def test_dimensionally_simple_units(self):
ureg = self.ureg
self.compareQuantity_compact(1*ureg.m, 1*ureg.m)
self.compareQuantity_compact(1e-9*ureg.m, 1*ureg.nm)
def test_power_units(self):
ureg = self.ureg
self.compareQuantity_compact(900*ureg.m**2, 900*ureg.m**2)
self.compareQuantity_compact(1e7*ureg.m**2, 10*ureg.km**2)
def test_inverse_units(self):
ureg = self.ureg
self.compareQuantity_compact(1/ureg.m, 1/ureg.m)
self.compareQuantity_compact(100e9/ureg.m, 100/ureg.nm)
def test_inverse_square_units(self):
ureg = self.ureg
self.compareQuantity_compact(1/ureg.m**2, 1/ureg.m**2)
self.compareQuantity_compact(1e11/ureg.m**2, 1e5/ureg.mm**2)
def test_fractional_exponent_units(self):
ureg = self.ureg
self.compareQuantity_compact(1*ureg.m**0.5, 1*ureg.m**0.5)
self.compareQuantity_compact(1e-2*ureg.m**0.5, 10*ureg.um**0.5)
def test_derived_units(self):
ureg = self.ureg
self.compareQuantity_compact(0.5*ureg.megabyte, 500*ureg.kilobyte)
self.compareQuantity_compact(1e-11*ureg.N, 10*ureg.pN)
def test_unit_parameter(self):
ureg = self.ureg
self.compareQuantity_compact(self.Q_(100e-9, 'kg m / s^2'),
100*ureg.nN, ureg.N)
self.compareQuantity_compact(self.Q_(101.3e3, 'kg/m/s^2'),
101.3*ureg.kPa, ureg.Pa)
def test_limits_magnitudes(self):
ureg = self.ureg
self.compareQuantity_compact(0*ureg.m, 0*ureg.m)
self.compareQuantity_compact(float('inf')*ureg.m, float('inf')*ureg.m)
def test_nonnumeric_magnitudes(self):
ureg = self.ureg
x = "some string"*ureg.m
self.assertRaises(RuntimeError, self.compareQuantity_compact(x,x))
class TestQuantityBasicMath(QuantityTestCase):
FORCE_NDARRAY = False
def _test_inplace(self, operator, value1, value2, expected_result, unit=None):
if isinstance(value1, string_types):
value1 = self.Q_(value1)
if isinstance(value2, string_types):
value2 = self.Q_(value2)
if isinstance(expected_result, string_types):
expected_result = self.Q_(expected_result)
if not unit is None:
value1 = value1 * unit
value2 = value2 * unit
expected_result = expected_result * unit
value1 = copy.copy(value1)
value2 = copy.copy(value2)
id1 = id(value1)
id2 = id(value2)
value1 = operator(value1, value2)
value2_cpy = copy.copy(value2)
self.assertQuantityAlmostEqual(value1, expected_result)
self.assertEqual(id1, id(value1))
self.assertQuantityAlmostEqual(value2, value2_cpy)
self.assertEqual(id2, id(value2))
def _test_not_inplace(self, operator, value1, value2, expected_result, unit=None):
if isinstance(value1, string_types):
value1 = self.Q_(value1)
if isinstance(value2, string_types):
value2 = self.Q_(value2)
if isinstance(expected_result, string_types):
expected_result = self.Q_(expected_result)
if not unit is None:
value1 = value1 * unit
value2 = value2 * unit
expected_result = expected_result * unit
id1 = id(value1)
id2 = id(value2)
value1_cpy = copy.copy(value1)
value2_cpy = copy.copy(value2)
result = operator(value1, value2)
self.assertQuantityAlmostEqual(expected_result, result)
self.assertQuantityAlmostEqual(value1, value1_cpy)
self.assertQuantityAlmostEqual(value2, value2_cpy)
self.assertNotEqual(id(result), id1)
self.assertNotEqual(id(result), id2)
def _test_quantity_add_sub(self, unit, func):
x = self.Q_(unit, 'centimeter')
y = self.Q_(unit, 'inch')
z = self.Q_(unit, 'second')
a = self.Q_(unit, None)
func(op.add, x, x, self.Q_(unit + unit, 'centimeter'))
func(op.add, x, y, self.Q_(unit + 2.54 * unit, 'centimeter'))
func(op.add, y, x, self.Q_(unit + unit / (2.54 * unit), 'inch'))
func(op.add, a, unit, self.Q_(unit + unit, None))
self.assertRaises(DimensionalityError, op.add, 10, x)
self.assertRaises(DimensionalityError, op.add, x, 10)
self.assertRaises(DimensionalityError, op.add, x, z)
func(op.sub, x, x, self.Q_(unit - unit, 'centimeter'))
func(op.sub, x, y, self.Q_(unit - 2.54 * unit, 'centimeter'))
func(op.sub, y, x, self.Q_(unit - unit / (2.54 * unit), 'inch'))
func(op.sub, a, unit, self.Q_(unit - unit, None))
self.assertRaises(DimensionalityError, op.sub, 10, x)
self.assertRaises(DimensionalityError, op.sub, x, 10)
self.assertRaises(DimensionalityError, op.sub, x, z)
def _test_quantity_iadd_isub(self, unit, func):
x = self.Q_(unit, 'centimeter')
y = self.Q_(unit, 'inch')
z = self.Q_(unit, 'second')
a = self.Q_(unit, None)
func(op.iadd, x, x, self.Q_(unit + unit, 'centimeter'))
func(op.iadd, x, y, self.Q_(unit + 2.54 * unit, 'centimeter'))
func(op.iadd, y, x, self.Q_(unit + unit / 2.54, 'inch'))
func(op.iadd, a, unit, self.Q_(unit + unit, None))
self.assertRaises(DimensionalityError, op.iadd, 10, x)
self.assertRaises(DimensionalityError, op.iadd, x, 10)
self.assertRaises(DimensionalityError, op.iadd, x, z)
func(op.isub, x, x, self.Q_(unit - unit, 'centimeter'))
func(op.isub, x, y, self.Q_(unit - 2.54, 'centimeter'))
func(op.isub, y, x, self.Q_(unit - unit / 2.54, 'inch'))
func(op.isub, a, unit, self.Q_(unit - unit, None))
self.assertRaises(DimensionalityError, op.sub, 10, x)
self.assertRaises(DimensionalityError, op.sub, x, 10)
self.assertRaises(DimensionalityError, op.sub, x, z)
def _test_quantity_mul_div(self, unit, func):
func(op.mul, unit * 10.0, '4.2*meter', '42*meter', unit)
func(op.mul, '4.2*meter', unit * 10.0, '42*meter', unit)
func(op.mul, '4.2*meter', '10*inch', '42*meter*inch', unit)
func(op.truediv, unit * 42, '4.2*meter', '10/meter', unit)
func(op.truediv, '4.2*meter', unit * 10.0, '0.42*meter', unit)
func(op.truediv, '4.2*meter', '10*inch', '0.42*meter/inch', unit)
def _test_quantity_imul_idiv(self, unit, func):
#func(op.imul, 10.0, '4.2*meter', '42*meter')
func(op.imul, '4.2*meter', 10.0, '42*meter', unit)
func(op.imul, '4.2*meter', '10*inch', '42*meter*inch', unit)
#func(op.truediv, 42, '4.2*meter', '10/meter')
func(op.itruediv, '4.2*meter', unit * 10.0, '0.42*meter', unit)
func(op.itruediv, '4.2*meter', '10*inch', '0.42*meter/inch', unit)
def _test_quantity_floordiv(self, unit, func):
a = self.Q_('10*meter')
b = self.Q_('3*second')
self.assertRaises(DimensionalityError, op.floordiv, a, b)
self.assertRaises(DimensionalityError, op.floordiv, 3, b)
self.assertRaises(DimensionalityError, op.floordiv, a, 3)
self.assertRaises(DimensionalityError, op.ifloordiv, a, b)
self.assertRaises(DimensionalityError, op.ifloordiv, 3, b)
self.assertRaises(DimensionalityError, op.ifloordiv, a, 3)
func(op.floordiv, unit * 10.0, '4.2*meter/meter', 2, unit)
func(op.floordiv, '10*meter', '4.2*inch', 93, unit)
def _test_quantity_mod(self, unit, func):
a = self.Q_('10*meter')
b = self.Q_('3*second')
self.assertRaises(DimensionalityError, op.mod, a, b)
self.assertRaises(DimensionalityError, op.mod, 3, b)
self.assertRaises(DimensionalityError, op.mod, a, 3)
self.assertRaises(DimensionalityError, op.imod, a, b)
self.assertRaises(DimensionalityError, op.imod, 3, b)
self.assertRaises(DimensionalityError, op.imod, a, 3)
func(op.mod, unit * 10.0, '4.2*meter/meter', 1.6, unit)
def _test_quantity_ifloordiv(self, unit, func):
func(op.ifloordiv, 10.0, '4.2*meter/meter', 2, unit)
func(op.ifloordiv, '10*meter', '4.2*inch', 93, unit)
def _test_quantity_divmod_one(self, a, b):
if isinstance(a, string_types):
a = self.Q_(a)
if isinstance(b, string_types):
b = self.Q_(b)
q, r = divmod(a, b)
self.assertEqual(q, a // b)
self.assertEqual(r, a % b)
self.assertEqual(a, (q * b) + r)
self.assertEqual(q, math.floor(q))
if b > (0 * b):
self.assertTrue((0 * b) <= r < b)
else:
self.assertTrue((0 * b) >= r > b)
if isinstance(a, self.Q_):
self.assertEqual(r.units, a.units)
else:
self.assertTrue(r.unitless)
self.assertTrue(q.unitless)
copy_a = copy.copy(a)
a %= b
self.assertEqual(a, r)
copy_a //= b
self.assertEqual(copy_a, q)
def _test_quantity_divmod(self):
self._test_quantity_divmod_one('10*meter', '4.2*inch')
self._test_quantity_divmod_one('-10*meter', '4.2*inch')
self._test_quantity_divmod_one('-10*meter', '-4.2*inch')
self._test_quantity_divmod_one('10*meter', '-4.2*inch')
self._test_quantity_divmod_one('400*degree', '3')
self._test_quantity_divmod_one('4', '180 degree')
self._test_quantity_divmod_one(4, '180 degree')
self._test_quantity_divmod_one('20', 4)
self._test_quantity_divmod_one('300*degree', '100 degree')
a = self.Q_('10*meter')
b = self.Q_('3*second')
self.assertRaises(DimensionalityError, divmod, a, b)
self.assertRaises(DimensionalityError, divmod, 3, b)
self.assertRaises(DimensionalityError, divmod, a, 3)
def _test_numeric(self, unit, ifunc):
self._test_quantity_add_sub(unit, self._test_not_inplace)
self._test_quantity_iadd_isub(unit, ifunc)
self._test_quantity_mul_div(unit, self._test_not_inplace)
self._test_quantity_imul_idiv(unit, ifunc)
self._test_quantity_floordiv(unit, self._test_not_inplace)
self._test_quantity_mod(unit, self._test_not_inplace)
self._test_quantity_divmod()
#self._test_quantity_ifloordiv(unit, ifunc)
def test_float(self):
self._test_numeric(1., self._test_not_inplace)
def test_fraction(self):
import fractions
self._test_numeric(fractions.Fraction(1, 1), self._test_not_inplace)
@helpers.requires_numpy()
def test_nparray(self):
self._test_numeric(np.ones((1, 3)), self._test_inplace)
def test_quantity_abs_round(self):
x = self.Q_(-4.2, 'meter')
y = self.Q_(4.2, 'meter')
# In Python 3+ round of x is delegated to x.__round__, instead of round(x.__float__)
# and therefore it can be properly implemented by Pint
for fun in (abs, op.pos, op.neg) + (round, ) if PYTHON3 else ():
zx = self.Q_(fun(x.magnitude), 'meter')
zy = self.Q_(fun(y.magnitude), 'meter')
rx = fun(x)
ry = fun(y)
self.assertEqual(rx, zx, 'while testing {0}'.format(fun))
self.assertEqual(ry, zy, 'while testing {0}'.format(fun))
self.assertIsNot(rx, zx, 'while testing {0}'.format(fun))
self.assertIsNot(ry, zy, 'while testing {0}'.format(fun))
def test_quantity_float_complex(self):
x = self.Q_(-4.2, None)
y = self.Q_(4.2, None)
z = self.Q_(1, 'meter')
for fun in (float, complex):
self.assertEqual(fun(x), fun(x.magnitude))
self.assertEqual(fun(y), fun(y.magnitude))
self.assertRaises(DimensionalityError, fun, z)
class TestDimensions(QuantityTestCase):
FORCE_NDARRAY = False
def test_get_dimensionality(self):
get = self.ureg.get_dimensionality
self.assertEqual(get('[time]'), UnitsContainer({'[time]': 1}))
self.assertEqual(get(UnitsContainer({'[time]': 1})), UnitsContainer({'[time]': 1}))
self.assertEqual(get('seconds'), UnitsContainer({'[time]': 1}))
self.assertEqual(get(UnitsContainer({'seconds': 1})), UnitsContainer({'[time]': 1}))
self.assertEqual(get('[speed]'), UnitsContainer({'[length]': 1, '[time]': -1}))
self.assertEqual(get('[acceleration]'), UnitsContainer({'[length]': 1, '[time]': -2}))
def test_dimensionality(self):
x = self.Q_(42, 'centimeter')
x.to_base_units()
x = self.Q_(42, 'meter*second')
self.assertEqual(x.dimensionality, UnitsContainer({'[length]': 1., '[time]': 1.}))
x = self.Q_(42, 'meter*second*second')
self.assertEqual(x.dimensionality, UnitsContainer({'[length]': 1., '[time]': 2.}))
x = self.Q_(42, 'inch*second*second')
self.assertEqual(x.dimensionality, UnitsContainer({'[length]': 1., '[time]': 2.}))
self.assertTrue(self.Q_(42, None).dimensionless)
self.assertFalse(self.Q_(42, 'meter').dimensionless)
self.assertTrue((self.Q_(42, 'meter') / self.Q_(1, 'meter')).dimensionless)
self.assertFalse((self.Q_(42, 'meter') / self.Q_(1, 'second')).dimensionless)
self.assertTrue((self.Q_(42, 'meter') / self.Q_(1, 'inch')).dimensionless)
def test_inclusion(self):
dim = self.Q_(42, 'meter').dimensionality
self.assertTrue('[length]' in dim)
self.assertFalse('[time]' in dim)
dim = (self.Q_(42, 'meter') / self.Q_(11, 'second')).dimensionality
self.assertTrue('[length]' in dim)
self.assertTrue('[time]' in dim)
dim = self.Q_(20.785, 'J/(mol)').dimensionality
for dimension in ('[length]', '[mass]', '[substance]', '[time]'):
self.assertTrue(dimension in dim)
self.assertFalse('[angle]' in dim)
class TestQuantityWithDefaultRegistry(TestDimensions):
@classmethod
def setUpClass(cls):
from pint import _DEFAULT_REGISTRY
cls.ureg = _DEFAULT_REGISTRY
cls.Q_ = cls.ureg.Quantity
class TestDimensionsWithDefaultRegistry(TestDimensions):
@classmethod
def setUpClass(cls):
from pint import _DEFAULT_REGISTRY
cls.ureg = _DEFAULT_REGISTRY
cls.Q_ = cls.ureg.Quantity
class TestOffsetUnitMath(QuantityTestCase, ParameterizedTestCase):
def setup(self):
self.ureg.autoconvert_offset_to_baseunit = False
self.ureg.default_as_delta = True
additions = [
# --- input tuple -------------------- | -- expected result --
(((100, 'kelvin'), (10, 'kelvin')), (110, 'kelvin')),
(((100, 'kelvin'), (10, 'degC')), 'error'),
(((100, 'kelvin'), (10, 'degF')), 'error'),
(((100, 'kelvin'), (10, 'degR')), (105.56, 'kelvin')),
(((100, 'kelvin'), (10, 'delta_degC')), (110, 'kelvin')),
(((100, 'kelvin'), (10, 'delta_degF')), (105.56, 'kelvin')),
(((100, 'degC'), (10, 'kelvin')), 'error'),
(((100, 'degC'), (10, 'degC')), 'error'),
(((100, 'degC'), (10, 'degF')), 'error'),
(((100, 'degC'), (10, 'degR')), 'error'),
(((100, 'degC'), (10, 'delta_degC')), (110, 'degC')),
(((100, 'degC'), (10, 'delta_degF')), (105.56, 'degC')),
(((100, 'degF'), (10, 'kelvin')), 'error'),
(((100, 'degF'), (10, 'degC')), 'error'),
(((100, 'degF'), (10, 'degF')), 'error'),
(((100, 'degF'), (10, 'degR')), 'error'),
(((100, 'degF'), (10, 'delta_degC')), (118, 'degF')),
(((100, 'degF'), (10, 'delta_degF')), (110, 'degF')),
(((100, 'degR'), (10, 'kelvin')), (118, 'degR')),
(((100, 'degR'), (10, 'degC')), 'error'),
(((100, 'degR'), (10, 'degF')), 'error'),
(((100, 'degR'), (10, 'degR')), (110, 'degR')),
(((100, 'degR'), (10, 'delta_degC')), (118, 'degR')),
(((100, 'degR'), (10, 'delta_degF')), (110, 'degR')),
(((100, 'delta_degC'), (10, 'kelvin')), (110, 'kelvin')),
(((100, 'delta_degC'), (10, 'degC')), (110, 'degC')),
(((100, 'delta_degC'), (10, 'degF')), (190, 'degF')),
(((100, 'delta_degC'), (10, 'degR')), (190, 'degR')),
(((100, 'delta_degC'), (10, 'delta_degC')), (110, 'delta_degC')),
(((100, 'delta_degC'), (10, 'delta_degF')), (105.56, 'delta_degC')),
(((100, 'delta_degF'), (10, 'kelvin')), (65.56, 'kelvin')),
(((100, 'delta_degF'), (10, 'degC')), (65.56, 'degC')),
(((100, 'delta_degF'), (10, 'degF')), (110, 'degF')),
(((100, 'delta_degF'), (10, 'degR')), (110, 'degR')),
(((100, 'delta_degF'), (10, 'delta_degC')), (118, 'delta_degF')),
(((100, 'delta_degF'), (10, 'delta_degF')), (110, 'delta_degF')),
]
@ParameterizedTestCase.parameterize(("input", "expected_output"),
additions)
def test_addition(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
qin1, qin2 = input_tuple
q1, q2 = self.Q_(*qin1), self.Q_(*qin2)
# update input tuple with new values to have correct values on failure
input_tuple = q1, q2
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.add, q1, q2)
else:
expected = self.Q_(*expected)
self.assertEqual(op.add(q1, q2).units, expected.units)
self.assertQuantityAlmostEqual(op.add(q1, q2), expected,
atol=0.01)
@helpers.requires_numpy()
@ParameterizedTestCase.parameterize(("input", "expected_output"),
additions)
def test_inplace_addition(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
(q1v, q1u), (q2v, q2u) = input_tuple
# update input tuple with new values to have correct values on failure
input_tuple = ((np.array([q1v]*2, dtype=np.float), q1u),
(np.array([q2v]*2, dtype=np.float), q2u))
Q_ = self.Q_
qin1, qin2 = input_tuple
q1, q2 = Q_(*qin1), Q_(*qin2)
q1_cp = copy.copy(q1)
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.iadd, q1_cp, q2)
else:
expected = np.array([expected[0]]*2, dtype=np.float), expected[1]
self.assertEqual(op.iadd(q1_cp, q2).units, Q_(*expected).units)
q1_cp = copy.copy(q1)
self.assertQuantityAlmostEqual(op.iadd(q1_cp, q2), Q_(*expected),
atol=0.01)
subtractions = [
(((100, 'kelvin'), (10, 'kelvin')), (90, 'kelvin')),
(((100, 'kelvin'), (10, 'degC')), (-183.15, 'kelvin')),
(((100, 'kelvin'), (10, 'degF')), (-160.93, 'kelvin')),
(((100, 'kelvin'), (10, 'degR')), (94.44, 'kelvin')),
(((100, 'kelvin'), (10, 'delta_degC')), (90, 'kelvin')),
(((100, 'kelvin'), (10, 'delta_degF')), (94.44, 'kelvin')),
(((100, 'degC'), (10, 'kelvin')), (363.15, 'delta_degC')),
(((100, 'degC'), (10, 'degC')), (90, 'delta_degC')),
(((100, 'degC'), (10, 'degF')), (112.22, 'delta_degC')),
(((100, 'degC'), (10, 'degR')), (367.59, 'delta_degC')),
(((100, 'degC'), (10, 'delta_degC')), (90, 'degC')),
(((100, 'degC'), (10, 'delta_degF')), (94.44, 'degC')),
(((100, 'degF'), (10, 'kelvin')), (541.67, 'delta_degF')),
(((100, 'degF'), (10, 'degC')), (50, 'delta_degF')),
(((100, 'degF'), (10, 'degF')), (90, 'delta_degF')),
(((100, 'degF'), (10, 'degR')), (549.67, 'delta_degF')),
(((100, 'degF'), (10, 'delta_degC')), (82, 'degF')),
(((100, 'degF'), (10, 'delta_degF')), (90, 'degF')),
(((100, 'degR'), (10, 'kelvin')), (82, 'degR')),
(((100, 'degR'), (10, 'degC')), (-409.67, 'degR')),
(((100, 'degR'), (10, 'degF')), (-369.67, 'degR')),
(((100, 'degR'), (10, 'degR')), (90, 'degR')),
(((100, 'degR'), (10, 'delta_degC')), (82, 'degR')),
(((100, 'degR'), (10, 'delta_degF')), (90, 'degR')),
(((100, 'delta_degC'), (10, 'kelvin')), (90, 'kelvin')),
(((100, 'delta_degC'), (10, 'degC')), (90, 'degC')),
(((100, 'delta_degC'), (10, 'degF')), (170, 'degF')),
(((100, 'delta_degC'), (10, 'degR')), (170, 'degR')),
(((100, 'delta_degC'), (10, 'delta_degC')), (90, 'delta_degC')),
(((100, 'delta_degC'), (10, 'delta_degF')), (94.44, 'delta_degC')),
(((100, 'delta_degF'), (10, 'kelvin')), (45.56, 'kelvin')),
(((100, 'delta_degF'), (10, 'degC')), (45.56, 'degC')),
(((100, 'delta_degF'), (10, 'degF')), (90, 'degF')),
(((100, 'delta_degF'), (10, 'degR')), (90, 'degR')),
(((100, 'delta_degF'), (10, 'delta_degC')), (82, 'delta_degF')),
(((100, 'delta_degF'), (10, 'delta_degF')), (90, 'delta_degF')),
]
@ParameterizedTestCase.parameterize(("input", "expected_output"),
subtractions)
def test_subtraction(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
qin1, qin2 = input_tuple
q1, q2 = self.Q_(*qin1), self.Q_(*qin2)
input_tuple = q1, q2
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.sub, q1, q2)
else:
expected = self.Q_(*expected)
self.assertEqual(op.sub(q1, q2).units, expected.units)
self.assertQuantityAlmostEqual(op.sub(q1, q2), expected,
atol=0.01)
# @unittest.expectedFailure
@helpers.requires_numpy()
@ParameterizedTestCase.parameterize(("input", "expected_output"),
subtractions)
def test_inplace_subtraction(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
(q1v, q1u), (q2v, q2u) = input_tuple
# update input tuple with new values to have correct values on failure
input_tuple = ((np.array([q1v]*2, dtype=np.float), q1u),
(np.array([q2v]*2, dtype=np.float), q2u))
Q_ = self.Q_
qin1, qin2 = input_tuple
q1, q2 = Q_(*qin1), Q_(*qin2)
q1_cp = copy.copy(q1)
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.isub, q1_cp, q2)
else:
expected = np.array([expected[0]]*2, dtype=np.float), expected[1]
self.assertEqual(op.isub(q1_cp, q2).units, Q_(*expected).units)
q1_cp = copy.copy(q1)
self.assertQuantityAlmostEqual(op.isub(q1_cp, q2), Q_(*expected),
atol=0.01)
multiplications = [
(((100, 'kelvin'), (10, 'kelvin')), (1000, 'kelvin**2')),
(((100, 'kelvin'), (10, 'degC')), 'error'),
(((100, 'kelvin'), (10, 'degF')), 'error'),
(((100, 'kelvin'), (10, 'degR')), (1000, 'kelvin*degR')),
(((100, 'kelvin'), (10, 'delta_degC')), (1000, 'kelvin*delta_degC')),
(((100, 'kelvin'), (10, 'delta_degF')), (1000, 'kelvin*delta_degF')),
(((100, 'degC'), (10, 'kelvin')), 'error'),
(((100, 'degC'), (10, 'degC')), 'error'),
(((100, 'degC'), (10, 'degF')), 'error'),
(((100, 'degC'), (10, 'degR')), 'error'),
(((100, 'degC'), (10, 'delta_degC')), 'error'),
(((100, 'degC'), (10, 'delta_degF')), 'error'),
(((100, 'degF'), (10, 'kelvin')), 'error'),
(((100, 'degF'), (10, 'degC')), 'error'),
(((100, 'degF'), (10, 'degF')), 'error'),
(((100, 'degF'), (10, 'degR')), 'error'),
(((100, 'degF'), (10, 'delta_degC')), 'error'),
(((100, 'degF'), (10, 'delta_degF')), 'error'),
(((100, 'degR'), (10, 'kelvin')), (1000, 'degR*kelvin')),
(((100, 'degR'), (10, 'degC')), 'error'),
(((100, 'degR'), (10, 'degF')), 'error'),
(((100, 'degR'), (10, 'degR')), (1000, 'degR**2')),
(((100, 'degR'), (10, 'delta_degC')), (1000, 'degR*delta_degC')),
(((100, 'degR'), (10, 'delta_degF')), (1000, 'degR*delta_degF')),
(((100, 'delta_degC'), (10, 'kelvin')), (1000, 'delta_degC*kelvin')),
(((100, 'delta_degC'), (10, 'degC')), 'error'),
(((100, 'delta_degC'), (10, 'degF')), 'error'),
(((100, 'delta_degC'), (10, 'degR')), (1000, 'delta_degC*degR')),
(((100, 'delta_degC'), (10, 'delta_degC')), (1000, 'delta_degC**2')),
(((100, 'delta_degC'), (10, 'delta_degF')), (1000, 'delta_degC*delta_degF')),
(((100, 'delta_degF'), (10, 'kelvin')), (1000, 'delta_degF*kelvin')),
(((100, 'delta_degF'), (10, 'degC')), 'error'),
(((100, 'delta_degF'), (10, 'degF')), 'error'),
(((100, 'delta_degF'), (10, 'degR')), (1000, 'delta_degF*degR')),
(((100, 'delta_degF'), (10, 'delta_degC')), (1000, 'delta_degF*delta_degC')),
(((100, 'delta_degF'), (10, 'delta_degF')), (1000, 'delta_degF**2')),
]
@ParameterizedTestCase.parameterize(("input", "expected_output"),
multiplications)
def test_multiplication(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
qin1, qin2 = input_tuple
q1, q2 = self.Q_(*qin1), self.Q_(*qin2)
input_tuple = q1, q2
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.mul, q1, q2)
else:
expected = self.Q_(*expected)
self.assertEqual(op.mul(q1, q2).units, expected.units)
self.assertQuantityAlmostEqual(op.mul(q1, q2), expected,
atol=0.01)
@helpers.requires_numpy()
@ParameterizedTestCase.parameterize(("input", "expected_output"),
multiplications)
def test_inplace_multiplication(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
(q1v, q1u), (q2v, q2u) = input_tuple
# update input tuple with new values to have correct values on failure
input_tuple = ((np.array([q1v]*2, dtype=np.float), q1u),
(np.array([q2v]*2, dtype=np.float), q2u))
Q_ = self.Q_
qin1, qin2 = input_tuple
q1, q2 = Q_(*qin1), Q_(*qin2)
q1_cp = copy.copy(q1)
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.imul, q1_cp, q2)
else:
expected = np.array([expected[0]]*2, dtype=np.float), expected[1]
self.assertEqual(op.imul(q1_cp, q2).units, Q_(*expected).units)
q1_cp = copy.copy(q1)
self.assertQuantityAlmostEqual(op.imul(q1_cp, q2), Q_(*expected),
atol=0.01)
divisions = [
(((100, 'kelvin'), (10, 'kelvin')), (10, '')),
(((100, 'kelvin'), (10, 'degC')), 'error'),
(((100, 'kelvin'), (10, 'degF')), 'error'),
(((100, 'kelvin'), (10, 'degR')), (10, 'kelvin/degR')),
(((100, 'kelvin'), (10, 'delta_degC')), (10, 'kelvin/delta_degC')),
(((100, 'kelvin'), (10, 'delta_degF')), (10, 'kelvin/delta_degF')),
(((100, 'degC'), (10, 'kelvin')), 'error'),
(((100, 'degC'), (10, 'degC')), 'error'),
(((100, 'degC'), (10, 'degF')), 'error'),
(((100, 'degC'), (10, 'degR')), 'error'),
(((100, 'degC'), (10, 'delta_degC')), 'error'),
(((100, 'degC'), (10, 'delta_degF')), 'error'),
(((100, 'degF'), (10, 'kelvin')), 'error'),
(((100, 'degF'), (10, 'degC')), 'error'),
(((100, 'degF'), (10, 'degF')), 'error'),
(((100, 'degF'), (10, 'degR')), 'error'),
(((100, 'degF'), (10, 'delta_degC')), 'error'),
(((100, 'degF'), (10, 'delta_degF')), 'error'),
(((100, 'degR'), (10, 'kelvin')), (10, 'degR/kelvin')),
(((100, 'degR'), (10, 'degC')), 'error'),
(((100, 'degR'), (10, 'degF')), 'error'),
(((100, 'degR'), (10, 'degR')), (10, '')),
(((100, 'degR'), (10, 'delta_degC')), (10, 'degR/delta_degC')),
(((100, 'degR'), (10, 'delta_degF')), (10, 'degR/delta_degF')),
(((100, 'delta_degC'), (10, 'kelvin')), (10, 'delta_degC/kelvin')),
(((100, 'delta_degC'), (10, 'degC')), 'error'),
(((100, 'delta_degC'), (10, 'degF')), 'error'),
(((100, 'delta_degC'), (10, 'degR')), (10, 'delta_degC/degR')),
(((100, 'delta_degC'), (10, 'delta_degC')), (10, '')),
(((100, 'delta_degC'), (10, 'delta_degF')), (10, 'delta_degC/delta_degF')),
(((100, 'delta_degF'), (10, 'kelvin')), (10, 'delta_degF/kelvin')),
(((100, 'delta_degF'), (10, 'degC')), 'error'),
(((100, 'delta_degF'), (10, 'degF')), 'error'),
(((100, 'delta_degF'), (10, 'degR')), (10, 'delta_degF/degR')),
(((100, 'delta_degF'), (10, 'delta_degC')), (10, 'delta_degF/delta_degC')),
(((100, 'delta_degF'), (10, 'delta_degF')), (10, '')),
]
@ParameterizedTestCase.parameterize(("input", "expected_output"),
divisions)
def test_truedivision(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
qin1, qin2 = input_tuple
q1, q2 = self.Q_(*qin1), self.Q_(*qin2)
input_tuple = q1, q2
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.truediv, q1, q2)
else:
expected = self.Q_(*expected)
self.assertEqual(op.truediv(q1, q2).units, expected.units)
self.assertQuantityAlmostEqual(op.truediv(q1, q2), expected,
atol=0.01)
@helpers.requires_numpy()
@ParameterizedTestCase.parameterize(("input", "expected_output"),
divisions)
def test_inplace_truedivision(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = False
(q1v, q1u), (q2v, q2u) = input_tuple
# update input tuple with new values to have correct values on failure
input_tuple = ((np.array([q1v]*2, dtype=np.float), q1u),
(np.array([q2v]*2, dtype=np.float), q2u))
Q_ = self.Q_
qin1, qin2 = input_tuple
q1, q2 = Q_(*qin1), Q_(*qin2)
q1_cp = copy.copy(q1)
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.itruediv, q1_cp, q2)
else:
expected = np.array([expected[0]]*2, dtype=np.float), expected[1]
self.assertEqual(op.itruediv(q1_cp, q2).units, Q_(*expected).units)
q1_cp = copy.copy(q1)
self.assertQuantityAlmostEqual(op.itruediv(q1_cp, q2),
Q_(*expected), atol=0.01)
multiplications_with_autoconvert_to_baseunit = [
(((100, 'kelvin'), (10, 'degC')), (28315., 'kelvin**2')),
(((100, 'kelvin'), (10, 'degF')), (26092.78, 'kelvin**2')),
(((100, 'degC'), (10, 'kelvin')), (3731.5, 'kelvin**2')),
(((100, 'degC'), (10, 'degC')), (105657.42, 'kelvin**2')),
(((100, 'degC'), (10, 'degF')), (97365.20, 'kelvin**2')),
(((100, 'degC'), (10, 'degR')), (3731.5, 'kelvin*degR')),
(((100, 'degC'), (10, 'delta_degC')), (3731.5, 'kelvin*delta_degC')),
(((100, 'degC'), (10, 'delta_degF')), (3731.5, 'kelvin*delta_degF')),
(((100, 'degF'), (10, 'kelvin')), (3109.28, 'kelvin**2')),
(((100, 'degF'), (10, 'degC')), (88039.20, 'kelvin**2')),
(((100, 'degF'), (10, 'degF')), (81129.69, 'kelvin**2')),
(((100, 'degF'), (10, 'degR')), (3109.28, 'kelvin*degR')),
(((100, 'degF'), (10, 'delta_degC')), (3109.28, 'kelvin*delta_degC')),
(((100, 'degF'), (10, 'delta_degF')), (3109.28, 'kelvin*delta_degF')),
(((100, 'degR'), (10, 'degC')), (28315., 'degR*kelvin')),
(((100, 'degR'), (10, 'degF')), (26092.78, 'degR*kelvin')),
(((100, 'delta_degC'), (10, 'degC')), (28315., 'delta_degC*kelvin')),
(((100, 'delta_degC'), (10, 'degF')), (26092.78, 'delta_degC*kelvin')),
(((100, 'delta_degF'), (10, 'degC')), (28315., 'delta_degF*kelvin')),
(((100, 'delta_degF'), (10, 'degF')), (26092.78, 'delta_degF*kelvin')),
]
@ParameterizedTestCase.parameterize(
("input", "expected_output"),
multiplications_with_autoconvert_to_baseunit)
def test_multiplication_with_autoconvert(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = True
qin1, qin2 = input_tuple
q1, q2 = self.Q_(*qin1), self.Q_(*qin2)
input_tuple = q1, q2
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.mul, q1, q2)
else:
expected = self.Q_(*expected)
self.assertEqual(op.mul(q1, q2).units, expected.units)
self.assertQuantityAlmostEqual(op.mul(q1, q2), expected,
atol=0.01)
@helpers.requires_numpy()
@ParameterizedTestCase.parameterize(
("input", "expected_output"),
multiplications_with_autoconvert_to_baseunit)
def test_inplace_multiplication_with_autoconvert(self, input_tuple, expected):
self.ureg.autoconvert_offset_to_baseunit = True
(q1v, q1u), (q2v, q2u) = input_tuple
# update input tuple with new values to have correct values on failure
input_tuple = ((np.array([q1v]*2, dtype=np.float), q1u),
(np.array([q2v]*2, dtype=np.float), q2u))
Q_ = self.Q_
qin1, qin2 = input_tuple
q1, q2 = Q_(*qin1), Q_(*qin2)
q1_cp = copy.copy(q1)
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.imul, q1_cp, q2)
else:
expected = np.array([expected[0]]*2, dtype=np.float), expected[1]
self.assertEqual(op.imul(q1_cp, q2).units, Q_(*expected).units)
q1_cp = copy.copy(q1)
self.assertQuantityAlmostEqual(op.imul(q1_cp, q2), Q_(*expected),
atol=0.01)
multiplications_with_scalar = [
(((10, 'kelvin'), 2), (20., 'kelvin')),
(((10, 'kelvin**2'), 2), (20., 'kelvin**2')),
(((10, 'degC'), 2), (20., 'degC')),
(((10, '1/degC'), 2), 'error'),
(((10, 'degC**0.5'), 2), 'error'),
(((10, 'degC**2'), 2), 'error'),
(((10, 'degC**-2'), 2), 'error'),
]
@ParameterizedTestCase.parameterize(
("input", "expected_output"), multiplications_with_scalar)
def test_multiplication_with_scalar(self, input_tuple, expected):
self.ureg.default_as_delta = False
in1, in2 = input_tuple
if type(in1) is tuple:
in1, in2 = self.Q_(*in1), in2
else:
in1, in2 = in1, self.Q_(*in2)
input_tuple = in1, in2 # update input_tuple for better tracebacks
if expected == 'error':
self.assertRaises(OffsetUnitCalculusError, op.mul, in1, in2)
else:
expected = self.Q_(*expected)
self.assertEqual(op.mul(in1, in2).units, expected.units)
self.assertQuantityAlmostEqual(op.mul(in1, in2), expected,
atol=0.01)
divisions_with_scalar = [ # without / with autoconvert to base unit
(((10, 'kelvin'), 2), [(5., 'kelvin'), (5., 'kelvin')]),
(((10, 'kelvin**2'), 2), [(5., 'kelvin**2'), (5., 'kelvin**2')]),
(((10, 'degC'), 2), ['error', 'error']),
(((10, 'degC**2'), 2), ['error', 'error']),
(((10, 'degC**-2'), 2), ['error', 'error']),
((2, (10, 'kelvin')), [(0.2, '1/kelvin'), (0.2, '1/kelvin')]),
((2, (10, 'degC')), ['error', (2/283.15, '1/kelvin')]),
((2, (10, 'degC**2')), ['error', 'error']),
((2, (10, 'degC**-2')), ['error', 'error']),
]
@ParameterizedTestCase.parameterize(
("input", "expected_output"), divisions_with_scalar)
def test_division_with_scalar(self, input_tuple, expected):
self.ureg.default_as_delta = False
in1, in2 = input_tuple
if type(in1) is tuple:
in1, in2 = self.Q_(*in1), in2
else:
in1, in2 = in1, self.Q_(*in2)
input_tuple = in1, in2 # update input_tuple for better tracebacks
expected_copy = expected[:]
for i, mode in enumerate([False, True]):
self.ureg.autoconvert_offset_to_baseunit = mode
if expected_copy[i] == 'error':
self.assertRaises(OffsetUnitCalculusError, op.truediv, in1, in2)
else:
expected = self.Q_(*expected_copy[i])
self.assertEqual(op.truediv(in1, in2).units, expected.units)
self.assertQuantityAlmostEqual(op.truediv(in1, in2), expected)
exponentiation = [ # resuls without / with autoconvert
(((10, 'degC'), 1), [(10, 'degC'), (10, 'degC')]),
(((10, 'degC'), 0.5), ['error', (283.15**0.5, 'kelvin**0.5')]),
(((10, 'degC'), 0), [(1., ''), (1., '')]),
(((10, 'degC'), -1), ['error', (1/(10+273.15), 'kelvin**-1')]),
(((10, 'degC'), -2), ['error', (1/(10+273.15)**2., 'kelvin**-2')]),
((( 0, 'degC'), -2), ['error', (1/(273.15)**2, 'kelvin**-2')]),
(((10, 'degC'), (2, '')), ['error', ((283.15)**2, 'kelvin**2')]),
(((10, 'degC'), (10, 'degK')), ['error', 'error']),
(((10, 'kelvin'), (2, '')), [(100., 'kelvin**2'), (100., 'kelvin**2')]),
(( 2, (2, 'kelvin')), ['error', 'error']),
(( 2, (500., 'millikelvin/kelvin')), [2**0.5, 2**0.5]),
(( 2, (0.5, 'kelvin/kelvin')), [2**0.5, 2**0.5]),
(((10, 'degC'), (500., 'millikelvin/kelvin')),
['error', (283.15**0.5, 'kelvin**0.5')]),
]
@ParameterizedTestCase.parameterize(
("input", "expected_output"), exponentiation)
def test_exponentiation(self, input_tuple, expected):
self.ureg.default_as_delta = False
in1, in2 = input_tuple
if type(in1) is tuple and type(in2) is tuple:
in1, in2 = self.Q_(*in1), self.Q_(*in2)
elif not type(in1) is tuple and type(in2) is tuple:
in2 = self.Q_(*in2)
else:
in1 = self.Q_(*in1)
input_tuple = in1, in2
expected_copy = expected[:]
for i, mode in enumerate([False, True]):
self.ureg.autoconvert_offset_to_baseunit = mode
if expected_copy[i] == 'error':
self.assertRaises((OffsetUnitCalculusError,
DimensionalityError), op.pow, in1, in2)
else:
if type(expected_copy[i]) is tuple:
expected = self.Q_(*expected_copy[i])
self.assertEqual(op.pow(in1, in2).units, expected.units)
else:
expected = expected_copy[i]
self.assertQuantityAlmostEqual(op.pow(in1, in2), expected)
@helpers.requires_numpy()
@ParameterizedTestCase.parameterize(
("input", "expected_output"), exponentiation)
def test_inplace_exponentiation(self, input_tuple, expected):
self.ureg.default_as_delta = False
in1, in2 = input_tuple
if type(in1) is tuple and type(in2) is tuple:
(q1v, q1u), (q2v, q2u) = in1, in2
in1 = self.Q_(*(np.array([q1v]*2, dtype=np.float), q1u))
in2 = self.Q_(q2v, q2u)
elif not type(in1) is tuple and type(in2) is tuple:
in2 = self.Q_(*in2)
else:
in1 = self.Q_(*in1)
input_tuple = in1, in2
expected_copy = expected[:]
for i, mode in enumerate([False, True]):
self.ureg.autoconvert_offset_to_baseunit = mode
in1_cp = copy.copy(in1)
if expected_copy[i] == 'error':
self.assertRaises((OffsetUnitCalculusError,
DimensionalityError), op.ipow, in1_cp, in2)
else:
if type(expected_copy[i]) is tuple:
expected = self.Q_(np.array([expected_copy[i][0]]*2,
dtype=np.float),
expected_copy[i][1])
self.assertEqual(op.ipow(in1_cp, in2).units, expected.units)
else:
expected = np.array([expected_copy[i]]*2, dtype=np.float)
in1_cp = copy.copy(in1)
self.assertQuantityAlmostEqual(op.ipow(in1_cp, in2), expected)
class TestDimensionReduction(QuantityTestCase):
def _calc_mass(self, ureg):
density = 3 * ureg.g / ureg.L
volume = 32 * ureg.milliliter
return density * volume
def _icalc_mass(self, ureg):
res = ureg.Quantity(3.0, 'gram/liter')
res *= ureg.Quantity(32.0, 'milliliter')
return res
def test_mul_and_div_reduction(self):
ureg = UnitRegistry(auto_reduce_dimensions=True)
mass = self._calc_mass(ureg)
self.assertEqual(mass.units, ureg.g)
ureg = UnitRegistry(auto_reduce_dimensions=False)
mass = self._calc_mass(ureg)
self.assertEqual(mass.units, ureg.g / ureg.L * ureg.milliliter)
@helpers.requires_numpy()
def test_imul_and_div_reduction(self):
ureg = UnitRegistry(auto_reduce_dimensions=True, force_ndarray=True)
mass = self._icalc_mass(ureg)
self.assertEqual(mass.units, ureg.g)
ureg = UnitRegistry(auto_reduce_dimensions=False, force_ndarray=True)
mass = self._icalc_mass(ureg)
self.assertEqual(mass.units, ureg.g / ureg.L * ureg.milliliter)
def test_reduction_to_dimensionless(self):
ureg = UnitRegistry(auto_reduce_dimensions=True)
x = (10 * ureg.feet) / (3 * ureg.inches)
self.assertEqual(x.units, UnitsContainer({}))
ureg = UnitRegistry(auto_reduce_dimensions=False)
x = (10 * ureg.feet) / (3 * ureg.inches)
self.assertEqual(x.units, ureg.feet / ureg.inches)
class TestTimedelta(QuantityTestCase):
def test_add_sub(self):
d = datetime.datetime(year=1968, month=1, day=10, hour=3, minute=42, second=24)
after = d + 3 * self.ureg.second
self.assertEqual(d + datetime.timedelta(seconds=3), after)
after = 3 * self.ureg.second + d
self.assertEqual(d + datetime.timedelta(seconds=3), after)
after = d - 3 * self.ureg.second
self.assertEqual(d - datetime.timedelta(seconds=3), after)
with self.assertRaises(DimensionalityError):
3 * self.ureg.second - d
def test_iadd_isub(self):
d = datetime.datetime(year=1968, month=1, day=10, hour=3, minute=42, second=24)
after = copy.copy(d)
after += 3 * self.ureg.second
self.assertEqual(d + datetime.timedelta(seconds=3), after)
after = 3 * self.ureg.second
after += d
self.assertEqual(d + datetime.timedelta(seconds=3), after)
after = copy.copy(d)
after -= 3 * self.ureg.second
self.assertEqual(d - datetime.timedelta(seconds=3), after)
after = 3 * self.ureg.second
with self.assertRaises(DimensionalityError):
after -= d