Files
deb-python-taskflow/taskflow/task.py
Joshua Harlow 15b2af47ae Use six string types instead of basestring
To increase our python3 compatability we should
attempt to use the six module for known issues
that are likely to happen in python3 when comparing
to string types.

Change-Id: Ib6fc32138e218c8b45023ca37d87b742694b8349
2013-09-12 20:01:06 +04:00

199 lines
7.2 KiB
Python

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright (C) 2013 Rackspace Hosting Inc. All Rights Reserved.
# Copyright (C) 2013 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import abc
import six
from taskflow.utils import misc
from taskflow.utils import reflection
def _save_as_to_mapping(save_as):
"""Convert save_as to mapping name => index
Result should follow storage convention for mappings.
"""
# TODO(harlowja): we should probably document this behavior & convention
# outside of code so that its more easily understandable, since what a task
# returns is pretty crucial for other later operations.
if save_as is None:
return {}
if isinstance(save_as, six.string_types):
# NOTE(harlowja): this means that your task will only return one item
# instead of a dictionary-like object or a indexable object (like a
# list or tuple).
return {save_as: None}
elif isinstance(save_as, (tuple, list)):
# NOTE(harlowja): this means that your task will return a indexable
# object, like a list or tuple and the results can be mapped by index
# to that tuple/list that is returned for others to use.
return dict((key, num) for num, key in enumerate(save_as))
elif isinstance(save_as, set):
# NOTE(harlowja): in the case where a set is given we will not be
# able to determine the numeric ordering in a reliable way (since it is
# a unordered set) so the only way for us to easily map the result of
# the task will be via the key itself.
return dict((key, key) for key in save_as)
raise TypeError('Task provides parameter '
'should be str, set or tuple/list, not %r' % save_as)
def _build_rebind_dict(args, rebind_args):
if rebind_args is None:
return {}
elif isinstance(rebind_args, (list, tuple)):
rebind = dict(zip(args, rebind_args))
if len(args) < len(rebind_args):
rebind.update((a, a) for a in rebind_args[len(args):])
return rebind
elif isinstance(rebind_args, dict):
return rebind_args
else:
raise TypeError('Invalid rebind value: %s' % rebind_args)
def _check_args_mapping(task_name, rebind, args, accepts_kwargs):
args = set(args)
rebind = set(rebind.keys())
extra_args = rebind - args
missing_args = args - rebind
if not accepts_kwargs and extra_args:
raise ValueError('Extra arguments given to task %s: %s'
% (task_name, sorted(extra_args)))
if missing_args:
raise ValueError('Missing arguments for task %s: %s'
% (task_name, sorted(missing_args)))
def _build_arg_mapping(task_name, reqs, rebind_args, function, do_infer):
task_args = reflection.get_required_callable_args(function)
accepts_kwargs = reflection.accepts_kwargs(function)
result = {}
if reqs:
result.update((a, a) for a in reqs)
if do_infer:
result.update((a, a) for a in task_args)
result.update(_build_rebind_dict(task_args, rebind_args))
_check_args_mapping(task_name, result, task_args, accepts_kwargs)
return result
class BaseTask(object):
"""An abstraction that defines a potential piece of work that can be
applied and can be reverted to undo the work as a single unit.
"""
__metaclass__ = abc.ABCMeta
def __init__(self, name, provides=None):
self._name = name
# An *immutable* input 'resource' name mapping this task depends
# on existing before this task can be applied.
#
# Format is input_name:arg_name
self.rebind = {}
# An *immutable* output 'resource' name dict this task
# produces that other tasks may depend on this task providing.
#
# Format is output index:arg_name
self.save_as = _save_as_to_mapping(provides)
# This identifies the version of the task to be ran which
# can be useful in resuming older versions of tasks. Standard
# major, minor version semantics apply.
self.version = (1, 0)
@property
def name(self):
return self._name
def __str__(self):
return "%s==%s" % (self.name, misc.get_task_version(self))
@abc.abstractmethod
def execute(self, *args, **kwargs):
"""Activate a given task which will perform some operation and return.
This method can be used to apply some given context and given set
of args and kwargs to accomplish some goal. Note that the result
that is returned needs to be serializable so that it can be passed
back into this task if reverting is triggered.
"""
def revert(self, *args, **kwargs):
"""Revert this task using the given context, result that the apply
provided as well as any information which may have caused
said reversion.
"""
@property
def provides(self):
return set(self.save_as)
@property
def requires(self):
return set(self.rebind.values())
class Task(BaseTask):
"""Base class for user-defined tasks
Adds following features to Task:
- auto-generates name from type of self
- adds all execute argument names to task requirements
"""
def __init__(self, name=None, provides=None, requires=None,
auto_extract=True, rebind=None):
"""Initialize task instance"""
if name is None:
name = reflection.get_callable_name(self)
super(Task, self).__init__(name,
provides=provides)
self.rebind = _build_arg_mapping(self.name, requires, rebind,
self.execute, auto_extract)
class FunctorTask(BaseTask):
"""Adaptor to make task from a callable
Take any callable and make a task from it.
"""
def __init__(self, execute, name=None, provides=None,
requires=None, auto_extract=True, rebind=None, revert=None,
version=None):
"""Initialize FunctorTask instance with given callable and kwargs"""
if name is None:
name = reflection.get_callable_name(execute)
super(FunctorTask, self).__init__(name, provides=provides)
self._execute = execute
self._revert = revert
if version is not None:
self.version = version
self.rebind = _build_arg_mapping(self.name, requires, rebind,
execute, auto_extract)
def execute(self, *args, **kwargs):
return self._execute(*args, **kwargs)
def revert(self, *args, **kwargs):
if self._revert:
return self._revert(*args, **kwargs)
else:
return None