Files
deb-python-taskflow/taskflow/examples/worker_based/flow.py
Stanislav Kudriashev 32e8c3da61 Message-oriented worker-based flow with kombu
* Implemented Worker to be started on remote host for
  handling tasks request.
* Implemented WorkerTaskExecutor that proxies tasks
  requests to remote workers.
* Implemented Proxy that is used for consuming and
  publishing messages by Worker and Executor.
* Added worker-based engine and worker task executor.
* Added kombu dependency to requirements.
* Added worker-based flow example.
* Added unit-tests for worker-based flow components.

Implements: blueprint worker-based-engine
Change-Id: I8c6859ba4a1a56c2592e3d67cdfb8968b13ee99c
2014-02-19 14:47:34 +02:00

69 lines
2.0 KiB
Python

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import json
import logging
import sys
import taskflow.engines
from taskflow.patterns import linear_flow as lf
from taskflow.tests import utils
LOG = logging.getLogger(__name__)
if __name__ == "__main__":
logging.basicConfig(level=logging.ERROR)
engine_conf = {
'engine': 'worker-based',
'exchange': 'taskflow',
'workers_info': {
'topic': [
'taskflow.tests.utils.TaskOneArgOneReturn',
'taskflow.tests.utils.TaskMultiArgOneReturn'
]
}
}
# parse command line
try:
arg = sys.argv[1]
except IndexError:
pass
else:
try:
cfg = json.loads(arg)
except ValueError:
engine_conf.update(url=arg)
else:
engine_conf.update(cfg)
finally:
LOG.debug("Worker configuration: %s\n" %
json.dumps(engine_conf, sort_keys=True, indent=4))
# create and run flow
flow = lf.Flow('simple-linear').add(
utils.TaskOneArgOneReturn(provides='result1'),
utils.TaskMultiArgOneReturn(provides='result2')
)
eng = taskflow.engines.load(flow,
store=dict(x=111, y=222, z=333),
engine_conf=engine_conf)
eng.run()
print(json.dumps(eng.storage.fetch_all(), sort_keys=True))