Files
deb-python-taskflow/taskflow/engines/action_engine/actions/retry.py
Joshua Harlow 359cc490bd Create and use a serial retry executor
To make it easily possible to change the retry
atom execution from being in the engine thread this
creates a retry executor (which is similar to the task
executor) and provide that a serial executor (which it will
use to execute with). This makes the retry and task actions
closer to being the same and makes the surrounding code that
much similar (which makes understanding it easier).

Change-Id: I993e938280df3bd97f8076293183ef21989e2dba
2015-07-21 10:10:23 -07:00

101 lines
3.9 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (C) 2012-2013 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from taskflow.engines.action_engine.actions import base
from taskflow import logging
from taskflow import retry as retry_atom
from taskflow import states
from taskflow.types import failure
LOG = logging.getLogger(__name__)
class RetryAction(base.Action):
"""An action that handles executing, state changes, ... of retry atoms."""
def __init__(self, storage, notifier, retry_executor):
super(RetryAction, self).__init__(storage, notifier)
self._retry_executor = retry_executor
def _get_retry_args(self, retry, addons=None):
arguments = self._storage.fetch_mapped_args(
retry.rebind,
atom_name=retry.name,
optional_args=retry.optional
)
history = self._storage.get_retry_history(retry.name)
arguments[retry_atom.EXECUTE_REVERT_HISTORY] = history
if addons:
arguments.update(addons)
return arguments
def change_state(self, retry, state, result=base.Action.NO_RESULT):
old_state = self._storage.get_atom_state(retry.name)
if state in self.SAVE_RESULT_STATES:
save_result = None
if result is not self.NO_RESULT:
save_result = result
self._storage.save(retry.name, save_result, state)
# TODO(harlowja): combine this with the save to avoid a call
# back into the persistence layer...
if state == states.REVERTED:
self._storage.cleanup_retry_history(retry.name, state)
else:
if state == old_state:
# NOTE(imelnikov): nothing really changed, so we should not
# write anything to storage and run notifications.
return
self._storage.set_atom_state(retry.name, state)
retry_uuid = self._storage.get_atom_uuid(retry.name)
details = {
'retry_name': retry.name,
'retry_uuid': retry_uuid,
'old_state': old_state,
}
if result is not self.NO_RESULT:
details['result'] = result
self._notifier.notify(state, details)
def schedule_execution(self, retry):
self.change_state(retry, states.RUNNING)
return self._retry_executor.execute_retry(
retry, self._get_retry_args(retry))
def complete_reversion(self, retry, result):
if isinstance(result, failure.Failure):
self.change_state(retry, states.REVERT_FAILURE, result=result)
else:
self.change_state(retry, states.REVERTED, result=result)
def complete_execution(self, retry, result):
if isinstance(result, failure.Failure):
self.change_state(retry, states.FAILURE, result=result)
else:
self.change_state(retry, states.SUCCESS, result=result)
def schedule_reversion(self, retry):
self.change_state(retry, states.REVERTING)
arg_addons = {
retry_atom.REVERT_FLOW_FAILURES: self._storage.get_failures(),
}
return self._retry_executor.revert_retry(
retry, self._get_retry_args(retry, addons=arg_addons))
def on_failure(self, retry, atom, last_failure):
self._storage.save_retry_failure(retry.name, atom.name, last_failure)
arguments = self._get_retry_args(retry)
return retry.on_failure(**arguments)