Files
deb-python-taskflow/taskflow/engines/action_engine/runtime.py
Joshua Harlow 5996c8f25e Allow the storage unit to use the right scoping strategy
Instead of having the fetch arguments functions need to be
provided a scope walker to correctly find the right arguments,
which only the internals of the action engine know about
provide a default scope walker (that is the same one the
action engine internal uses) to the storage unit and have it be
the default strategy used so that users need not know how to
pass it in (which they should not care about).

This allows for users to fetch the same mapped arguments as the
internals of the engine will fetch.

Change-Id: I1beca532b2b7c7ad98b09265a0c4477658052d16
2015-03-11 19:13:52 -07:00

124 lines
4.5 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from taskflow.engines.action_engine.actions import retry as ra
from taskflow.engines.action_engine.actions import task as ta
from taskflow.engines.action_engine import analyzer as an
from taskflow.engines.action_engine import completer as co
from taskflow.engines.action_engine import runner as ru
from taskflow.engines.action_engine import scheduler as sched
from taskflow.engines.action_engine import scopes as sc
from taskflow import states as st
from taskflow.utils import misc
class Runtime(object):
"""A aggregate of runtime objects, properties, ... used during execution.
This object contains various utility methods and properties that represent
the collection of runtime components and functionality needed for an
action engine to run to completion.
"""
def __init__(self, compilation, storage, atom_notifier, task_executor):
self._atom_notifier = atom_notifier
self._task_executor = task_executor
self._storage = storage
self._compilation = compilation
self._scopes = {}
@property
def compilation(self):
return self._compilation
@property
def storage(self):
return self._storage
@misc.cachedproperty
def analyzer(self):
return an.Analyzer(self._compilation, self._storage)
@misc.cachedproperty
def runner(self):
return ru.Runner(self, self._task_executor)
@misc.cachedproperty
def completer(self):
return co.Completer(self)
@misc.cachedproperty
def scheduler(self):
return sched.Scheduler(self)
@misc.cachedproperty
def retry_action(self):
return ra.RetryAction(self._storage,
self._atom_notifier)
@misc.cachedproperty
def task_action(self):
return ta.TaskAction(self._storage,
self._atom_notifier,
self._task_executor)
def fetch_scopes_for(self, atom_name):
"""Fetches a tuple of the visible scopes for the given atom."""
try:
return self._scopes[atom_name]
except KeyError:
atom = None
for node in self.analyzer.iterate_all_nodes():
if node.name == atom_name:
atom = node
break
if atom is not None:
walker = sc.ScopeWalker(self.compilation, atom,
names_only=True)
self._scopes[atom_name] = visible_to = tuple(walker)
else:
visible_to = tuple([])
return visible_to
# Various helper methods used by the runtime components; not for public
# consumption...
def reset_nodes(self, nodes, state=st.PENDING, intention=st.EXECUTE):
for node in nodes:
if state:
if self.task_action.handles(node):
self.task_action.change_state(node, state,
progress=0.0)
elif self.retry_action.handles(node):
self.retry_action.change_state(node, state)
else:
raise TypeError("Unknown how to reset atom '%s' (%s)"
% (node, type(node)))
if intention:
self.storage.set_atom_intention(node.name, intention)
def reset_all(self, state=st.PENDING, intention=st.EXECUTE):
self.reset_nodes(self.analyzer.iterate_all_nodes(),
state=state, intention=intention)
def reset_subgraph(self, node, state=st.PENDING, intention=st.EXECUTE):
self.reset_nodes(self.analyzer.iterate_subgraph(node),
state=state, intention=intention)
def retry_subflow(self, retry):
self.storage.set_atom_intention(retry.name, st.EXECUTE)
self.reset_subgraph(retry)