
In situations where many atoms can execute at the same time it is sometimes useful to denote that when this situation happens that certain atoms should execute/revert before other atoms (or at least an attempt should be made to do this) instead of being nearly arbitrary. This adds a priority class attribute to the atom class (which can be overridden or changed as needed) which is then used in the runtime state machine to sort on so that atoms with higher priority get submitted (and therefore executed/reverted) first. Closes-Bug: #1507755 Change-Id: I3dcc705959085cba167883c85278e394b5cb1d2b
264 lines
12 KiB
Python
264 lines
12 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright (C) 2013 Rackspace Hosting Inc. All Rights Reserved.
|
|
# Copyright (C) 2013 Yahoo! Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import abc
|
|
import collections
|
|
import itertools
|
|
|
|
from oslo_utils import reflection
|
|
import six
|
|
from six.moves import zip as compat_zip
|
|
|
|
from taskflow.types import sets
|
|
from taskflow.utils import misc
|
|
|
|
|
|
# Helper types tuples...
|
|
_sequence_types = (list, tuple, collections.Sequence)
|
|
_set_types = (set, collections.Set)
|
|
|
|
|
|
def _save_as_to_mapping(save_as):
|
|
"""Convert save_as to mapping name => index.
|
|
|
|
Result should follow storage convention for mappings.
|
|
"""
|
|
# TODO(harlowja): we should probably document this behavior & convention
|
|
# outside of code so that it's more easily understandable, since what an
|
|
# atom returns is pretty crucial for other later operations.
|
|
if save_as is None:
|
|
return collections.OrderedDict()
|
|
if isinstance(save_as, six.string_types):
|
|
# NOTE(harlowja): this means that your atom will only return one item
|
|
# instead of a dictionary-like object or a indexable object (like a
|
|
# list or tuple).
|
|
return collections.OrderedDict([(save_as, None)])
|
|
elif isinstance(save_as, _sequence_types):
|
|
# NOTE(harlowja): this means that your atom will return a indexable
|
|
# object, like a list or tuple and the results can be mapped by index
|
|
# to that tuple/list that is returned for others to use.
|
|
return collections.OrderedDict((key, num)
|
|
for num, key in enumerate(save_as))
|
|
elif isinstance(save_as, _set_types):
|
|
# NOTE(harlowja): in the case where a set is given we will not be
|
|
# able to determine the numeric ordering in a reliable way (since it
|
|
# may be an unordered set) so the only way for us to easily map the
|
|
# result of the atom will be via the key itself.
|
|
return collections.OrderedDict((key, key) for key in save_as)
|
|
else:
|
|
raise TypeError('Atom provides parameter '
|
|
'should be str, set or tuple/list, not %r' % save_as)
|
|
|
|
|
|
def _build_rebind_dict(args, rebind_args):
|
|
"""Build a argument remapping/rebinding dictionary.
|
|
|
|
This dictionary allows an atom to declare that it will take a needed
|
|
requirement bound to a given name with another name instead (mapping the
|
|
new name onto the required name).
|
|
"""
|
|
if rebind_args is None:
|
|
return collections.OrderedDict()
|
|
elif isinstance(rebind_args, (list, tuple)):
|
|
rebind = collections.OrderedDict(compat_zip(args, rebind_args))
|
|
if len(args) < len(rebind_args):
|
|
rebind.update((a, a) for a in rebind_args[len(args):])
|
|
return rebind
|
|
elif isinstance(rebind_args, dict):
|
|
return rebind_args
|
|
else:
|
|
raise TypeError("Invalid rebind value '%s' (%s)"
|
|
% (rebind_args, type(rebind_args)))
|
|
|
|
|
|
def _build_arg_mapping(atom_name, reqs, rebind_args, function, do_infer,
|
|
ignore_list=None):
|
|
"""Builds an input argument mapping for a given function.
|
|
|
|
Given a function, its requirements and a rebind mapping this helper
|
|
function will build the correct argument mapping for the given function as
|
|
well as verify that the final argument mapping does not have missing or
|
|
extra arguments (where applicable).
|
|
"""
|
|
|
|
# Build a list of required arguments based on function signature.
|
|
req_args = reflection.get_callable_args(function, required_only=True)
|
|
all_args = reflection.get_callable_args(function, required_only=False)
|
|
|
|
# Remove arguments that are part of ignore list.
|
|
if ignore_list:
|
|
for arg in ignore_list:
|
|
if arg in req_args:
|
|
req_args.remove(arg)
|
|
else:
|
|
ignore_list = []
|
|
|
|
# Build the required names.
|
|
required = collections.OrderedDict()
|
|
|
|
# Add required arguments to required mappings if inference is enabled.
|
|
if do_infer:
|
|
required.update((a, a) for a in req_args)
|
|
|
|
# Add additional manually provided requirements to required mappings.
|
|
if reqs:
|
|
if isinstance(reqs, six.string_types):
|
|
required.update({reqs: reqs})
|
|
else:
|
|
required.update((a, a) for a in reqs)
|
|
|
|
# Update required mappings values based on rebinding of arguments names.
|
|
required.update(_build_rebind_dict(req_args, rebind_args))
|
|
|
|
# Determine if there are optional arguments that we may or may not take.
|
|
if do_infer:
|
|
opt_args = sets.OrderedSet(all_args)
|
|
opt_args = opt_args - set(itertools.chain(six.iterkeys(required),
|
|
iter(ignore_list)))
|
|
optional = collections.OrderedDict((a, a) for a in opt_args)
|
|
else:
|
|
optional = collections.OrderedDict()
|
|
|
|
# Check if we are given some extra arguments that we aren't able to accept.
|
|
if not reflection.accepts_kwargs(function):
|
|
extra_args = sets.OrderedSet(six.iterkeys(required))
|
|
extra_args -= all_args
|
|
if extra_args:
|
|
raise ValueError('Extra arguments given to atom %s: %s'
|
|
% (atom_name, list(extra_args)))
|
|
|
|
# NOTE(imelnikov): don't use set to preserve order in error message
|
|
missing_args = [arg for arg in req_args if arg not in required]
|
|
if missing_args:
|
|
raise ValueError('Missing arguments for atom %s: %s'
|
|
% (atom_name, missing_args))
|
|
return required, optional
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class Atom(object):
|
|
"""An unit of work that causes a flow to progress (in some manner).
|
|
|
|
An atom is a named object that operates with input data to perform
|
|
some action that furthers the overall flows progress. It usually also
|
|
produces some of its own named output as a result of this process.
|
|
|
|
:param name: Meaningful name for this atom, should be something that is
|
|
distinguishable and understandable for notification,
|
|
debugging, storing and any other similar purposes.
|
|
:param provides: A set, string or list of items that
|
|
this will be providing (or could provide) to others, used
|
|
to correlate and associate the thing/s this atom
|
|
produces, if it produces anything at all.
|
|
:param inject: An *immutable* input_name => value dictionary which
|
|
specifies any initial inputs that should be automatically
|
|
injected into the atoms scope before the atom execution
|
|
commences (this allows for providing atom *local* values
|
|
that do not need to be provided by other atoms/dependents).
|
|
:ivar version: An *immutable* version that associates version information
|
|
with this atom. It can be useful in resuming older versions
|
|
of atoms. Standard major, minor versioning concepts
|
|
should apply.
|
|
:ivar save_as: An *immutable* output ``resource`` name
|
|
:py:class:`.OrderedDict` this atom produces that other
|
|
atoms may depend on this atom providing. The format is
|
|
output index (or key when a dictionary is returned from
|
|
the execute method) to stored argument name.
|
|
:ivar rebind: An *immutable* input ``resource`` :py:class:`.OrderedDict`
|
|
that can be used to alter the inputs given to this atom. It
|
|
is typically used for mapping a prior atoms output into
|
|
the names that this atom expects (in a way this is like
|
|
remapping a namespace of another atom into the namespace
|
|
of this atom).
|
|
:ivar inject: See parameter ``inject``.
|
|
:ivar name: See parameter ``name``.
|
|
:ivar requires: A :py:class:`~taskflow.types.sets.OrderedSet` of inputs
|
|
this atom requires to function.
|
|
:ivar optional: A :py:class:`~taskflow.types.sets.OrderedSet` of inputs
|
|
that are optional for this atom to function.
|
|
:ivar provides: A :py:class:`~taskflow.types.sets.OrderedSet` of outputs
|
|
this atom produces.
|
|
"""
|
|
|
|
priority = 0
|
|
"""A numeric priority that instances of this class will have when running,
|
|
used when there are multiple *parallel* candidates to execute and/or
|
|
revert. During this situation the candidate list will be stably sorted
|
|
based on this priority attribute which will result in atoms with higher
|
|
priorities executing (or reverting) before atoms with lower
|
|
priorities (higher being defined as a number bigger, or greater tha
|
|
an atom with a lower priority number). By default all atoms have the same
|
|
priority (zero).
|
|
|
|
For example when the following is combined into a
|
|
graph (where each node in the denoted graph is some task)::
|
|
|
|
a -> b
|
|
b -> c
|
|
b -> e
|
|
b -> f
|
|
|
|
When ``b`` finishes there will then be three candidates that can run
|
|
``(c, e, f)`` and they may run in any order. What this priority does is
|
|
sort those three by their priority before submitting them to be
|
|
worked on (so that instead of say a random run order they will now be
|
|
ran by there sorted order). This is also true when reverting (in that the
|
|
sort order of the potential nodes will be used to determine the
|
|
submission order).
|
|
"""
|
|
|
|
def __init__(self, name=None, provides=None, inject=None):
|
|
self.name = name
|
|
self.version = (1, 0)
|
|
self.inject = inject
|
|
self.save_as = _save_as_to_mapping(provides)
|
|
self.requires = sets.OrderedSet()
|
|
self.optional = sets.OrderedSet()
|
|
self.provides = sets.OrderedSet(self.save_as)
|
|
self.rebind = collections.OrderedDict()
|
|
|
|
def _build_arg_mapping(self, executor, requires=None, rebind=None,
|
|
auto_extract=True, ignore_list=None):
|
|
required, optional = _build_arg_mapping(self.name, requires, rebind,
|
|
executor, auto_extract,
|
|
ignore_list=ignore_list)
|
|
rebind = collections.OrderedDict()
|
|
for (arg_name, bound_name) in itertools.chain(six.iteritems(required),
|
|
six.iteritems(optional)):
|
|
rebind.setdefault(arg_name, bound_name)
|
|
self.rebind = rebind
|
|
self.requires = sets.OrderedSet(six.itervalues(required))
|
|
self.optional = sets.OrderedSet(six.itervalues(optional))
|
|
if self.inject:
|
|
inject_keys = frozenset(six.iterkeys(self.inject))
|
|
self.requires -= inject_keys
|
|
self.optional -= inject_keys
|
|
|
|
@abc.abstractmethod
|
|
def execute(self, *args, **kwargs):
|
|
"""Executes this atom."""
|
|
|
|
@abc.abstractmethod
|
|
def revert(self, *args, **kwargs):
|
|
"""Reverts this atom (undoing any :meth:`execute` side-effects)."""
|
|
|
|
def __str__(self):
|
|
return "%s==%s" % (self.name, misc.get_version_string(self))
|
|
|
|
def __repr__(self):
|
|
return '<%s %s>' % (reflection.get_class_name(self), self)
|