Files
deb-python-taskflow/taskflow/examples/calculate_in_parallel.py
Joshua Harlow b1f81badfd Bump requirements to the latest
Match the requirements for taskflow with
the openstack requirements (note the upstream
requirements are missing 'futures' and 'networkx')
and update the new hacking violations that were
detected due to the hacking requirement version
bump.

Change-Id: I8d1326cf2a8b1ea062f5e9aacd0c4f8261c6531a
2013-10-05 21:49:08 +00:00

72 lines
2.2 KiB
Python

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright (C) 2012-2013 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
import os
import sys
logging.basicConfig(level=logging.ERROR)
top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
os.pardir,
os.pardir))
sys.path.insert(0, top_dir)
import taskflow.engines
from taskflow.patterns import linear_flow as lf
from taskflow.patterns import unordered_flow as uf
from taskflow import task
# This examples shows how LinearFlow and ParallelFlow can be used
# together to execute calculations in parallel and then use the
# result for the next task. Adder task is used for all calculations
# and arguments' bindings are used to set correct parameters to the task.
class Provider(task.Task):
def __init__(self, name, *args, **kwargs):
super(Provider, self).__init__(name=name, **kwargs)
self._provide = args
def execute(self):
return self._provide
class Adder(task.Task):
def execute(self, x, y):
return x + y
flow = lf.Flow('root').add(
# x1 = 2, y1 = 3, x2 = 5, x3 = 8
Provider("provide-adder", 2, 3, 5, 8,
provides=('x1', 'y1', 'x2', 'y2')),
uf.Flow('adders').add(
# z1 = x1+y1 = 5
Adder(name="add", provides='z1', rebind=['x1', 'y1']),
# z2 = x2+y2 = 13
Adder(name="add-2", provides='z2', rebind=['x2', 'y2']),
),
# r = z1+z2 = 18
Adder(name="sum-1", provides='r', rebind=['z1', 'z2']))
result = taskflow.engines.run(flow, engine_conf='parallel')
print result