Files
deb-python-taskflow/taskflow/engines/action_engine/runtime.py
Joshua Harlow 018dbf628d Have reset state handlers go through a shared list
To make it hopefully easier to understand the commonality
of this function and its handlers have the handlers be
defined at the top of the function and use the common list
in the node iteration routine when resetting/matching.

Change-Id: I288eb548172b2f6f35e2bd90683f2065d3aa02dc
2015-04-15 16:10:33 -07:00

133 lines
4.7 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from taskflow.engines.action_engine.actions import retry as ra
from taskflow.engines.action_engine.actions import task as ta
from taskflow.engines.action_engine import analyzer as an
from taskflow.engines.action_engine import completer as co
from taskflow.engines.action_engine import runner as ru
from taskflow.engines.action_engine import scheduler as sched
from taskflow.engines.action_engine import scopes as sc
from taskflow import states as st
from taskflow.utils import misc
class Runtime(object):
"""A aggregate of runtime objects, properties, ... used during execution.
This object contains various utility methods and properties that represent
the collection of runtime components and functionality needed for an
action engine to run to completion.
"""
def __init__(self, compilation, storage, atom_notifier, task_executor):
self._atom_notifier = atom_notifier
self._task_executor = task_executor
self._storage = storage
self._compilation = compilation
self._walkers_to_names = {}
@property
def compilation(self):
return self._compilation
@property
def storage(self):
return self._storage
@misc.cachedproperty
def analyzer(self):
return an.Analyzer(self)
@misc.cachedproperty
def runner(self):
return ru.Runner(self, self._task_executor)
@misc.cachedproperty
def completer(self):
return co.Completer(self)
@misc.cachedproperty
def scheduler(self):
return sched.Scheduler(self)
@misc.cachedproperty
def retry_action(self):
return ra.RetryAction(self._storage,
self._atom_notifier)
@misc.cachedproperty
def task_action(self):
return ta.TaskAction(self._storage,
self._atom_notifier,
self._task_executor)
def fetch_scopes_for(self, atom_name):
"""Fetches a walker of the visible scopes for the given atom."""
try:
return self._walkers_to_names[atom_name]
except KeyError:
atom = None
for node in self.analyzer.iterate_all_nodes():
if node.name == atom_name:
atom = node
break
if atom is not None:
walker = sc.ScopeWalker(self.compilation, atom,
names_only=True)
self._walkers_to_names[atom_name] = walker
else:
walker = None
return walker
# Various helper methods used by the runtime components; not for public
# consumption...
def reset_nodes(self, nodes, state=st.PENDING, intention=st.EXECUTE):
tweaked = []
node_state_handlers = [
(self.task_action, {'progress': 0.0}),
(self.retry_action, {}),
]
for node in nodes:
if state or intention:
tweaked.append((node, state, intention))
if state:
handled = False
for h, kwargs in node_state_handlers:
if h.handles(node):
h.change_state(node, state, **kwargs)
handled = True
break
if not handled:
raise TypeError("Unknown how to reset state of"
" node '%s' (%s)" % (node, type(node)))
if intention:
self.storage.set_atom_intention(node.name, intention)
return tweaked
def reset_all(self, state=st.PENDING, intention=st.EXECUTE):
return self.reset_nodes(self.analyzer.iterate_all_nodes(),
state=state, intention=intention)
def reset_subgraph(self, node, state=st.PENDING, intention=st.EXECUTE):
return self.reset_nodes(self.analyzer.iterate_subgraph(node),
state=state, intention=intention)
def retry_subflow(self, retry):
self.storage.set_atom_intention(retry.name, st.EXECUTE)
self.reset_subgraph(retry)