
Fixes bug 1445827 Depends-On: I02e3c9aacef0b295a2f823a5cbaf11768a90cb82 Change-Id: I1db681803598ac1bc917fd74a99458bc61edf3f1
237 lines
10 KiB
Python
237 lines
10 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright (C) 2013 Rackspace Hosting Inc. All Rights Reserved.
|
|
# Copyright (C) 2013 Yahoo! Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import abc
|
|
import collections
|
|
import itertools
|
|
|
|
from oslo_utils import reflection
|
|
import six
|
|
from six.moves import zip as compat_zip
|
|
|
|
from taskflow.types import sets
|
|
from taskflow.utils import misc
|
|
|
|
|
|
# Helper types tuples...
|
|
_sequence_types = (list, tuple, collections.Sequence)
|
|
_set_types = (set, collections.Set)
|
|
|
|
|
|
def _save_as_to_mapping(save_as):
|
|
"""Convert save_as to mapping name => index.
|
|
|
|
Result should follow storage convention for mappings.
|
|
"""
|
|
# TODO(harlowja): we should probably document this behavior & convention
|
|
# outside of code so that it's more easily understandable, since what an
|
|
# atom returns is pretty crucial for other later operations.
|
|
if save_as is None:
|
|
return collections.OrderedDict()
|
|
if isinstance(save_as, six.string_types):
|
|
# NOTE(harlowja): this means that your atom will only return one item
|
|
# instead of a dictionary-like object or a indexable object (like a
|
|
# list or tuple).
|
|
return collections.OrderedDict([(save_as, None)])
|
|
elif isinstance(save_as, _sequence_types):
|
|
# NOTE(harlowja): this means that your atom will return a indexable
|
|
# object, like a list or tuple and the results can be mapped by index
|
|
# to that tuple/list that is returned for others to use.
|
|
return collections.OrderedDict((key, num)
|
|
for num, key in enumerate(save_as))
|
|
elif isinstance(save_as, _set_types):
|
|
# NOTE(harlowja): in the case where a set is given we will not be
|
|
# able to determine the numeric ordering in a reliable way (since it
|
|
# may be an unordered set) so the only way for us to easily map the
|
|
# result of the atom will be via the key itself.
|
|
return collections.OrderedDict((key, key) for key in save_as)
|
|
else:
|
|
raise TypeError('Atom provides parameter '
|
|
'should be str, set or tuple/list, not %r' % save_as)
|
|
|
|
|
|
def _build_rebind_dict(args, rebind_args):
|
|
"""Build a argument remapping/rebinding dictionary.
|
|
|
|
This dictionary allows an atom to declare that it will take a needed
|
|
requirement bound to a given name with another name instead (mapping the
|
|
new name onto the required name).
|
|
"""
|
|
if rebind_args is None:
|
|
return collections.OrderedDict()
|
|
elif isinstance(rebind_args, (list, tuple)):
|
|
rebind = collections.OrderedDict(compat_zip(args, rebind_args))
|
|
if len(args) < len(rebind_args):
|
|
rebind.update((a, a) for a in rebind_args[len(args):])
|
|
return rebind
|
|
elif isinstance(rebind_args, dict):
|
|
return rebind_args
|
|
else:
|
|
raise TypeError("Invalid rebind value '%s' (%s)"
|
|
% (rebind_args, type(rebind_args)))
|
|
|
|
|
|
def _build_arg_mapping(atom_name, reqs, rebind_args, function, do_infer,
|
|
ignore_list=None):
|
|
"""Builds an input argument mapping for a given function.
|
|
|
|
Given a function, its requirements and a rebind mapping this helper
|
|
function will build the correct argument mapping for the given function as
|
|
well as verify that the final argument mapping does not have missing or
|
|
extra arguments (where applicable).
|
|
"""
|
|
|
|
# Build a list of required arguments based on function signature.
|
|
req_args = reflection.get_callable_args(function, required_only=True)
|
|
all_args = reflection.get_callable_args(function, required_only=False)
|
|
|
|
# Remove arguments that are part of ignore list.
|
|
if ignore_list:
|
|
for arg in ignore_list:
|
|
if arg in req_args:
|
|
req_args.remove(arg)
|
|
else:
|
|
ignore_list = []
|
|
|
|
# Build the required names.
|
|
required = collections.OrderedDict()
|
|
|
|
# Add required arguments to required mappings if inference is enabled.
|
|
if do_infer:
|
|
required.update((a, a) for a in req_args)
|
|
|
|
# Add additional manually provided requirements to required mappings.
|
|
if reqs:
|
|
if isinstance(reqs, six.string_types):
|
|
required.update({reqs: reqs})
|
|
else:
|
|
required.update((a, a) for a in reqs)
|
|
|
|
# Update required mappings values based on rebinding of arguments names.
|
|
required.update(_build_rebind_dict(req_args, rebind_args))
|
|
|
|
# Determine if there are optional arguments that we may or may not take.
|
|
if do_infer:
|
|
opt_args = sets.OrderedSet(all_args)
|
|
opt_args = opt_args - set(itertools.chain(six.iterkeys(required),
|
|
iter(ignore_list)))
|
|
optional = collections.OrderedDict((a, a) for a in opt_args)
|
|
else:
|
|
optional = collections.OrderedDict()
|
|
|
|
# Check if we are given some extra arguments that we aren't able to accept.
|
|
if not reflection.accepts_kwargs(function):
|
|
extra_args = sets.OrderedSet(six.iterkeys(required))
|
|
extra_args -= all_args
|
|
if extra_args:
|
|
raise ValueError('Extra arguments given to atom %s: %s'
|
|
% (atom_name, list(extra_args)))
|
|
|
|
# NOTE(imelnikov): don't use set to preserve order in error message
|
|
missing_args = [arg for arg in req_args if arg not in required]
|
|
if missing_args:
|
|
raise ValueError('Missing arguments for atom %s: %s'
|
|
% (atom_name, missing_args))
|
|
return required, optional
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class Atom(object):
|
|
"""An unit of work that causes a flow to progress (in some manner).
|
|
|
|
An atom is a named object that operates with input data to perform
|
|
some action that furthers the overall flows progress. It usually also
|
|
produces some of its own named output as a result of this process.
|
|
|
|
:param name: Meaningful name for this atom, should be something that is
|
|
distinguishable and understandable for notification,
|
|
debugging, storing and any other similar purposes.
|
|
:param provides: A set, string or list of items that
|
|
this will be providing (or could provide) to others, used
|
|
to correlate and associate the thing/s this atom
|
|
produces, if it produces anything at all.
|
|
:param inject: An *immutable* input_name => value dictionary which
|
|
specifies any initial inputs that should be automatically
|
|
injected into the atoms scope before the atom execution
|
|
commences (this allows for providing atom *local* values
|
|
that do not need to be provided by other atoms/dependents).
|
|
:ivar version: An *immutable* version that associates version information
|
|
with this atom. It can be useful in resuming older versions
|
|
of atoms. Standard major, minor versioning concepts
|
|
should apply.
|
|
:ivar save_as: An *immutable* output ``resource`` name
|
|
:py:class:`.OrderedDict` this atom produces that other
|
|
atoms may depend on this atom providing. The format is
|
|
output index (or key when a dictionary is returned from
|
|
the execute method) to stored argument name.
|
|
:ivar rebind: An *immutable* input ``resource`` :py:class:`.OrderedDict`
|
|
that can be used to alter the inputs given to this atom. It
|
|
is typically used for mapping a prior atoms output into
|
|
the names that this atom expects (in a way this is like
|
|
remapping a namespace of another atom into the namespace
|
|
of this atom).
|
|
:ivar inject: See parameter ``inject``.
|
|
:ivar name: See parameter ``name``.
|
|
:ivar requires: A :py:class:`~taskflow.types.sets.OrderedSet` of inputs
|
|
this atom requires to function.
|
|
:ivar optional: A :py:class:`~taskflow.types.sets.OrderedSet` of inputs
|
|
that are optional for this atom to function.
|
|
:ivar provides: A :py:class:`~taskflow.types.sets.OrderedSet` of outputs
|
|
this atom produces.
|
|
"""
|
|
|
|
def __init__(self, name=None, provides=None, inject=None):
|
|
self.name = name
|
|
self.version = (1, 0)
|
|
self.inject = inject
|
|
self.save_as = _save_as_to_mapping(provides)
|
|
self.requires = sets.OrderedSet()
|
|
self.optional = sets.OrderedSet()
|
|
self.provides = sets.OrderedSet(self.save_as)
|
|
self.rebind = collections.OrderedDict()
|
|
|
|
def _build_arg_mapping(self, executor, requires=None, rebind=None,
|
|
auto_extract=True, ignore_list=None):
|
|
required, optional = _build_arg_mapping(self.name, requires, rebind,
|
|
executor, auto_extract,
|
|
ignore_list=ignore_list)
|
|
rebind = collections.OrderedDict()
|
|
for (arg_name, bound_name) in itertools.chain(six.iteritems(required),
|
|
six.iteritems(optional)):
|
|
rebind.setdefault(arg_name, bound_name)
|
|
self.rebind = rebind
|
|
self.requires = sets.OrderedSet(six.itervalues(required))
|
|
self.optional = sets.OrderedSet(six.itervalues(optional))
|
|
if self.inject:
|
|
inject_keys = frozenset(six.iterkeys(self.inject))
|
|
self.requires -= inject_keys
|
|
self.optional -= inject_keys
|
|
|
|
@abc.abstractmethod
|
|
def execute(self, *args, **kwargs):
|
|
"""Executes this atom."""
|
|
|
|
@abc.abstractmethod
|
|
def revert(self, *args, **kwargs):
|
|
"""Reverts this atom (undoing any :meth:`execute` side-effects)."""
|
|
|
|
def __str__(self):
|
|
return "%s==%s" % (self.name, misc.get_version_string(self))
|
|
|
|
def __repr__(self):
|
|
return '<%s %s>' % (reflection.get_class_name(self), self)
|