Files
deb-python-taskflow/taskflow/engines/action_engine/runner.py
Joshua Harlow e1ef04492e Translate the engine runner into a well defined state-machine
Instead of having a ad-hoc state-machine being used to perform
the various runtime actions (performed when a engine is ran) we
can gain a much more explict execution model by translating that
ad-hoc state machine to an explicit one instead...

This commit does just that, it adds a new fsm type that can be
used to create, define and run state-machines that respond to
various events (internal or external) and uses it in the runner action
engine module to run the previously ad-hc/implicit state-machine.

Implements blueprint runner-state-machine

Change-Id: Id35633a9de707f3ffb1a4b7e9619af1be009317f
2014-09-07 08:49:15 -07:00

240 lines
9.5 KiB
Python

# -*- coding: utf-8 -*-
# Copyright (C) 2012 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
from taskflow import states as st
from taskflow.types import fsm
from taskflow.utils import misc
# Waiting state timeout (in seconds).
_WAITING_TIMEOUT = 60
# Meta states the state machine uses.
_UNDEFINED = 'UNDEFINED'
_GAME_OVER = 'GAME_OVER'
_META_STATES = (_GAME_OVER, _UNDEFINED)
LOG = logging.getLogger(__name__)
class _MachineMemory(object):
"""State machine memory."""
def __init__(self):
self.next_nodes = set()
self.not_done = set()
self.failures = []
self.done = set()
class _MachineBuilder(object):
"""State machine *builder* that the runner uses.
NOTE(harlowja): the machine states that this build will for are::
+--------------+-----------+------------+----------+---------+
| Start | Event | End | On Enter | On Exit |
+--------------+-----------+------------+----------+---------+
| ANALYZING | finished | GAME_OVER | on_enter | on_exit |
| ANALYZING | schedule | SCHEDULING | on_enter | on_exit |
| ANALYZING | wait | WAITING | on_enter | on_exit |
| FAILURE[$] | | | | |
| GAME_OVER | failed | FAILURE | on_enter | on_exit |
| GAME_OVER | reverted | REVERTED | on_enter | on_exit |
| GAME_OVER | success | SUCCESS | on_enter | on_exit |
| GAME_OVER | suspended | SUSPENDED | on_enter | on_exit |
| RESUMING | schedule | SCHEDULING | on_enter | on_exit |
| REVERTED[$] | | | | |
| SCHEDULING | wait | WAITING | on_enter | on_exit |
| SUCCESS[$] | | | | |
| SUSPENDED[$] | | | | |
| UNDEFINED[^] | start | RESUMING | on_enter | on_exit |
| WAITING | analyze | ANALYZING | on_enter | on_exit |
+--------------+-----------+------------+----------+---------+
Between any of these yielded states (minus ``GAME_OVER`` and ``UNDEFINED``)
if the engine has been suspended or the engine has failed (due to a
non-resolveable task failure or scheduling failure) the machine will stop
executing new tasks (currently running tasks will be allowed to complete)
and this machines run loop will be broken.
"""
def __init__(self, runtime, waiter):
self._analyzer = runtime.analyzer
self._completer = runtime.completer
self._scheduler = runtime.scheduler
self._storage = runtime.storage
self._waiter = waiter
def runnable(self):
return self._storage.get_flow_state() == st.RUNNING
def build(self, timeout=None):
memory = _MachineMemory()
if timeout is None:
timeout = _WAITING_TIMEOUT
def resume(old_state, new_state, event):
memory.next_nodes.update(self._completer.resume())
memory.next_nodes.update(self._analyzer.get_next_nodes())
return 'schedule'
def game_over(old_state, new_state, event):
if memory.failures:
return 'failed'
if self._analyzer.get_next_nodes():
return 'suspended'
elif self._analyzer.is_success():
return 'success'
else:
return 'reverted'
def schedule(old_state, new_state, event):
if self.runnable() and memory.next_nodes:
not_done, failures = self._scheduler.schedule(
memory.next_nodes)
if not_done:
memory.not_done.update(not_done)
if failures:
memory.failures.extend(failures)
memory.next_nodes.clear()
return 'wait'
def wait(old_state, new_state, event):
# TODO(harlowja): maybe we should start doing 'yield from' this
# call sometime in the future, or equivalent that will work in
# py2 and py3.
if memory.not_done:
done, not_done = self._waiter.wait_for_any(memory.not_done,
timeout)
memory.done.update(done)
memory.not_done = not_done
return 'analyze'
def analyze(old_state, new_state, event):
next_nodes = set()
while memory.done:
fut = memory.done.pop()
try:
node, event, result = fut.result()
retain = self._completer.complete(node, event, result)
if retain and isinstance(result, misc.Failure):
memory.failures.append(result)
except Exception:
memory.failures.append(misc.Failure())
else:
try:
more_nodes = self._analyzer.get_next_nodes(node)
except Exception:
memory.failures.append(misc.Failure())
else:
next_nodes.update(more_nodes)
if self.runnable() and next_nodes and not memory.failures:
memory.next_nodes.update(next_nodes)
return 'schedule'
elif memory.not_done:
return 'wait'
else:
return 'finished'
def on_exit(old_state, event):
LOG.debug("Exiting old state '%s' in response to event '%s'",
old_state, event)
def on_enter(new_state, event):
LOG.debug("Entering new state '%s' in response to event '%s'",
new_state, event)
# NOTE(harlowja): when ran in debugging mode it is quite useful
# to track the various state transitions as they happen...
watchers = {}
if LOG.isEnabledFor(logging.DEBUG):
watchers['on_exit'] = on_exit
watchers['on_enter'] = on_enter
m = fsm.FSM(_UNDEFINED)
m.add_state(_GAME_OVER, **watchers)
m.add_state(_UNDEFINED, **watchers)
m.add_state(st.ANALYZING, **watchers)
m.add_state(st.RESUMING, **watchers)
m.add_state(st.REVERTED, terminal=True, **watchers)
m.add_state(st.SCHEDULING, **watchers)
m.add_state(st.SUCCESS, terminal=True, **watchers)
m.add_state(st.SUSPENDED, terminal=True, **watchers)
m.add_state(st.WAITING, **watchers)
m.add_state(st.FAILURE, terminal=True, **watchers)
m.add_transition(_GAME_OVER, st.REVERTED, 'reverted')
m.add_transition(_GAME_OVER, st.SUCCESS, 'success')
m.add_transition(_GAME_OVER, st.SUSPENDED, 'suspended')
m.add_transition(_GAME_OVER, st.FAILURE, 'failed')
m.add_transition(_UNDEFINED, st.RESUMING, 'start')
m.add_transition(st.ANALYZING, _GAME_OVER, 'finished')
m.add_transition(st.ANALYZING, st.SCHEDULING, 'schedule')
m.add_transition(st.ANALYZING, st.WAITING, 'wait')
m.add_transition(st.RESUMING, st.SCHEDULING, 'schedule')
m.add_transition(st.SCHEDULING, st.WAITING, 'wait')
m.add_transition(st.WAITING, st.ANALYZING, 'analyze')
m.add_reaction(_GAME_OVER, 'finished', game_over)
m.add_reaction(st.ANALYZING, 'analyze', analyze)
m.add_reaction(st.RESUMING, 'start', resume)
m.add_reaction(st.SCHEDULING, 'schedule', schedule)
m.add_reaction(st.WAITING, 'wait', wait)
return (m, memory)
class Runner(object):
"""Runner that iterates while executing nodes using the given runtime.
This runner acts as the action engine run loop/state-machine, it resumes
the workflow, schedules all task it can for execution using the runtimes
scheduler and analyzer components, and than waits on returned futures and
then activates the runtimes completion component to finish up those tasks
and so on...
NOTE(harlowja): If the runtimes scheduler component is able to schedule
tasks in parallel, this enables parallel running and/or reversion.
"""
# Informational states this action yields while running, not useful to
# have the engine record but useful to provide to end-users when doing
# execution iterations.
ignorable_states = (st.SCHEDULING, st.WAITING, st.RESUMING, st.ANALYZING)
def __init__(self, runtime, waiter):
self._builder = _MachineBuilder(runtime, waiter)
@property
def builder(self):
return self._builder
def runnable(self):
return self._builder.runnable()
def run_iter(self, timeout=None):
"""Runs the nodes using a built state machine."""
machine, memory = self.builder.build(timeout=timeout)
for (_prior_state, new_state) in machine.run_iter('start'):
# NOTE(harlowja): skip over meta-states.
if new_state not in _META_STATES:
if new_state == st.FAILURE:
yield (new_state, memory.failures)
else:
yield (new_state, [])