# Copyright (c) 2015 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from oslo_log import log as logging import six from sahara import conductor as cond from sahara import context from sahara.utils.openstack import nova conductor = cond.API LOG = logging.getLogger(__name__) @six.add_metaclass(abc.ABCMeta) class AutoConfigsProvider(object): def __init__(self, mapper, plugin_configs, cluster, extra_spec=None): """This meta class provides general recommendation utils for cluster configuration. :param mapper: dictionary, that describes which cluster configs and node_configs to configure. It should maps to following dicts: node_configs to configure and cluster_configs to configure. This dicts should contains abstract names of configs as keys and tuple (correct_applicable_target, correct_name) as values. Such representation allows to use same AutoConfigsProvider for plugins with almost same configs and configuring principles. :param plugin_configs: all plugins_configs for specified plugin :param cluster: cluster which is required to configure :param extra_spec: extra helpful information about AutoConfigs """ self.plugin_configs = plugin_configs self.cluster = cluster self.node_configs_to_update = mapper.get('node_configs', {}) self.cluster_configs_to_update = mapper.get('cluster_configs', {}) self.extra_spec = {} if not extra_spec else extra_spec @abc.abstractmethod def _get_recommended_node_configs(self, node_group): """Method calculates and returns recommended configs for node_group. It's not required to update node_configs of node_group using the conductor api in this method, because it will be done in the method apply_node_configs. :param node_group: NodeGroup Sahara resource. :return: dictionary with calculated recommended configs for node_group. """ pass @abc.abstractmethod def _get_recommended_cluster_configs(self): """Method calculates and returns recommended configs for cluster. It's not required to update cluster_configs of cluster using the conductor api in this method, because it will be done in the method apply_cluster_configs. :return: dictionary with calculated recommended configs for cluster. """ pass def _can_be_recommended(self, configs_list, node_group=None): """Method calculates and returns True, when it's possible to automatically configure provided list of configs configs_list. Otherwise, method should return False. :param configs_list: list of configs which we want to configure :param node_group: optional argument, which should be provided if some config can be used in node_configs of some node_group :return: True if all configs can be configured and False otherwise """ # cluster configs is Frozen Dict, so let's call to_dict() cl_configs = self.cluster.cluster_configs.to_dict() for ncfg in configs_list: section, name = self._get_correct_section_and_name(ncfg) if section in cl_configs and name in cl_configs[section]: return False if not node_group: return True cl_configs = node_group.node_configs.to_dict() for ncfg in configs_list: section, name = self._get_correct_section_and_name(ncfg) if section in cl_configs and name in cl_configs[section]: return False return True def _get_correct_section_and_name(self, config_name): """Calculates and returns correct applicable target and name from abstract name of config. :param config_name: abstract name of config. :return: correct applicable target and name for config_name """ section, name = None, None if config_name in self.cluster_configs_to_update: section = self.cluster_configs_to_update[config_name][0] name = self.cluster_configs_to_update[config_name][1] elif config_name in self.node_configs_to_update: section = self.node_configs_to_update[config_name][0] name = self.node_configs_to_update[config_name][1] return section, name def _get_default_config_value(self, config_name): """Calculates and return default value of config from abstract name of config. :param config_name: abstract name of config. :return: default config value for config_name. """ section, name = self._get_correct_section_and_name(config_name) for config in self.plugin_configs: if config.applicable_target == section and config.name == name: return config.default_value def _merge_configs(self, current_configs, proposed_configs): """Correctly merges old configs and new extra configs""" result = {} for (section, configs) in six.iteritems(proposed_configs): cfg_values = {} if section in current_configs: cfg_values = (current_configs[section] if current_configs[section] else {}) cfg_values.update(configs) result.update({section: cfg_values}) for (section, configs) in six.iteritems(current_configs): if section not in result: result.update({section: configs}) return result def apply_node_configs(self, node_group): """Method applies configs for node_group using conductor api, which were calculated with recommend_node_configs method. :param node_group: NodeGroup Sahara resource. :return: None. """ if not node_group.use_autoconfig or not self.cluster.use_autoconfig: return to_update = self.node_configs_to_update recommended_node_configs = self._get_recommended_node_configs( node_group) if not recommended_node_configs: # Nothing to configure return current_dict = node_group.node_configs.to_dict() configuration = {} for ncfg in six.iterkeys(to_update): if ncfg not in recommended_node_configs: continue n_section = to_update[ncfg][0] n_name = to_update[ncfg][1] proposed_config_value = recommended_node_configs[ncfg] if n_section not in configuration: configuration.update({n_section: {}}) configuration[n_section].update({n_name: proposed_config_value}) current_dict = self._merge_configs(current_dict, configuration) conductor.node_group_update(context.ctx(), node_group, {'node_configs': current_dict}) def apply_cluster_configs(self): """Method applies configs for cluster using conductor api, which were calculated with recommend_cluster_configs method. :return: None. """ cluster = self.cluster if not cluster.use_autoconfig: return to_update = self.cluster_configs_to_update recommended_cluster_configs = self._get_recommended_cluster_configs() if not recommended_cluster_configs: # Nothing to configure return current_dict = cluster.cluster_configs.to_dict() configuration = {} for ncfg in six.iterkeys(to_update): if ncfg not in recommended_cluster_configs: continue n_section = to_update[ncfg][0] n_name = to_update[ncfg][1] proposed_config_value = recommended_cluster_configs[ncfg] if n_section not in configuration: configuration.update({n_section: {}}) configuration[n_section].update({n_name: proposed_config_value}) current_dict = self._merge_configs(current_dict, configuration) conductor.cluster_update(context.ctx(), cluster, {'cluster_configs': current_dict}) def apply_recommended_configs(self): """Method applies recommended configs for cluster and for all node_groups using conductor api. :return: None. """ for ng in self.cluster.node_groups: self.apply_node_configs(ng) self.apply_cluster_configs() configs = list(self.cluster_configs_to_update.keys()) configs.extend(list(self.node_configs_to_update.keys())) LOG.debug("Following configs were auto-configured: {configs}".format( configs=configs)) class HadoopAutoConfigsProvider(AutoConfigsProvider): def __init__(self, mapper, plugin_configs, cluster, extra_spec=None, hbase=False): super(HadoopAutoConfigsProvider, self).__init__( mapper, plugin_configs, cluster, extra_spec) self.requested_flavors = {} self.is_hbase_enabled = hbase def _get_java_opts(self, value): return "-Xmx%dm" % int(value) def _transform_mb_to_gb(self, mb): return mb / 1024. def _transform_gb_to_mb(self, gb): return gb * 1024. def _get_min_size_of_container(self, ram): if ram <= 4: return 256 if ram <= 8: return 512 if ram <= 24: return 1024 return 2048 def _get_os_ram_recommendation(self, ram): upper_bounds = [4, 8, 16, 24, 48, 64, 72, 96, 128, 256] reserve_for_os = [1, 2, 2, 4, 6, 8, 8, 12, 24, 32] for (upper, reserve) in zip(upper_bounds, reserve_for_os): if ram <= upper: return reserve return 64 def _get_hbase_ram_recommendations(self, ram): if not self.is_hbase_enabled: return 0 upper_bounds = [4, 8, 16, 24, 48, 64, 72, 96, 128, 256] reserve_for_hbase = [1, 1, 2, 4, 8, 8, 8, 16, 24, 32] for (upper, reserve) in zip(upper_bounds, reserve_for_hbase): if ram <= upper: return reserve return 64 def _get_node_group_data(self, node_group): if node_group.flavor_id not in self.requested_flavors: flavor = nova.get_flavor(id=node_group.flavor_id) self.requested_flavors[node_group.flavor_id] = flavor else: flavor = self.requested_flavors[node_group.flavor_id] cpu = flavor.vcpus ram = flavor.ram data = {} # config recommendations was taken from Ambari code os = self._get_os_ram_recommendation(self._transform_mb_to_gb(ram)) hbase = self._get_hbase_ram_recommendations( self._transform_mb_to_gb(ram)) reserved_ram = self._transform_gb_to_mb(os + hbase) min_container_size = self._get_min_size_of_container( self._transform_mb_to_gb(ram)) # we use large amount of containers to allow users to run # at least 4 jobs at same time on clusters based on small flavors data["containers"] = int(max( 8, min(2 * cpu, ram / min_container_size))) data["ramPerContainer"] = (ram - reserved_ram) / data["containers"] data["ramPerContainer"] = max(data["ramPerContainer"], min_container_size) data["ramPerContainer"] = min(2048, int(data["ramPerContainer"])) data["ramPerContainer"] = int(data["ramPerContainer"]) data["mapMemory"] = int(data["ramPerContainer"]) data["reduceMemory"] = int(2 * data["ramPerContainer"]) data["amMemory"] = int(min(data["mapMemory"], data["reduceMemory"])) return data def _get_recommended_node_configs(self, node_group): """Calculates recommended MapReduce and YARN configs for specified node_group. :param node_group: NodeGroup Sahara resource :return: dictionary with recommended MapReduce and YARN configs """ configs_to_update = list(self.node_configs_to_update.keys()) if not self._can_be_recommended(configs_to_update, node_group): return {} data = self._get_node_group_data(node_group) r = {} r['yarn.nodemanager.resource.memory-mb'] = (data['containers'] * data['ramPerContainer']) r['yarn.scheduler.minimum-allocation-mb'] = data['ramPerContainer'] r['yarn.scheduler.maximum-allocation-mb'] = (data['containers'] * data['ramPerContainer']) r['yarn.nodemanager.vmem-check-enabled'] = "false" r['yarn.app.mapreduce.am.resource.mb'] = data['amMemory'] r['yarn.app.mapreduce.am.command-opts'] = self._get_java_opts( 0.8 * data['amMemory']) r['mapreduce.map.memory.mb'] = data['mapMemory'] r['mapreduce.reduce.memory.mb'] = data['reduceMemory'] r['mapreduce.map.java.opts'] = self._get_java_opts( 0.8 * data['mapMemory']) r['mapreduce.reduce.java.opts'] = self._get_java_opts( 0.8 * data['reduceMemory']) r['mapreduce.task.io.sort.mb'] = int(min( 0.4 * data['mapMemory'], 1024)) return r def _get_recommended_cluster_configs(self): """Method recommends dfs_replication for cluster. :return: recommended value of dfs_replication. """ if not self._can_be_recommended(['dfs.replication']): return {} datanode_count = 0 datanode_proc_name = "datanode" if 'datanode_process_name' in self.extra_spec: datanode_proc_name = self.extra_spec['datanode_process_name'] for ng in self.cluster.node_groups: if datanode_proc_name in ng.node_processes: datanode_count += ng.count replica = 'dfs.replication' recommended_value = self._get_default_config_value(replica) if recommended_value: return {replica: min(recommended_value, datanode_count)} else: return {}