heat-translator/translator/hot/tosca/tosca_compute.py
Vahid Hashemian 39e5cdeddb Create dictionary returning methods for certain class properties
Other than properties() and properties_def() methods in capabilities.py,
capabilitytype.py and statefulentitytype.py that switched from
returning a list to returning a dictionary (bug #1316275) there are
other methods that can benefit from a similar update:
- all_properties() in datatype.py
- attributes_def() in statefulentitytype.py
- capabilities() in entity_template.py
- capabilities() in nodetype.py
- properties() in entity_template.py

Change-Id: I5fbe8032dcf6ced0f771bdf655f669cb53688a72
Closes-Bug: #1435547
Related-Bug: #1316275
2015-04-10 13:29:14 -07:00

193 lines
8.8 KiB
Python
Executable File

#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from translator.common.utils import MemoryUnit
from translator.hot.syntax.hot_resource import HotResource
# A design issue to be resolved is how to translate the generic TOSCA server
# properties to OpenStack flavors and images. At the Atlanta design summit,
# there was discussion on using Glance to store metadata and Graffiti to
# describe artifacts. We will follow these projects to see if they can be
# leveraged for this TOSCA translation.
# For development purpose at this time, we temporarily hardcode a list of
# flavors and images here
FLAVORS = {'m1.xlarge': {'mem_size': 16384, 'disk_size': 160, 'num_cpus': 8},
'm1.large': {'mem_size': 8192, 'disk_size': 80, 'num_cpus': 4},
'm1.medium': {'mem_size': 4096, 'disk_size': 40, 'num_cpus': 2},
'm1.small': {'mem_size': 2048, 'disk_size': 20, 'num_cpus': 1},
'm1.tiny': {'mem_size': 512, 'disk_size': 1, 'num_cpus': 1},
'm1.micro': {'mem_size': 128, 'disk_size': 0, 'num_cpus': 1},
'm1.nano': {'mem_size': 64, 'disk_size': 0, 'num_cpus': 1}}
IMAGES = {'ubuntu-software-config-os-init': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Ubuntu',
'version': '14.04'},
'fedora-amd64-heat-config': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Fedora',
'version': '18'},
'F18-x86_64-cfntools': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Fedora',
'version': '19'},
'Fedora-x86_64-20-20131211.1-sda': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'Fedora',
'version': '20'},
'cirros-0.3.1-x86_64-uec': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'CirrOS',
'version': '0.3.1'},
'cirros-0.3.2-x86_64-uec': {'architecture': 'x86_64',
'type': 'Linux',
'distribution': 'CirrOS',
'version': '0.3.2'}}
class ToscaCompute(HotResource):
'''Translate TOSCA node type tosca.nodes.Compute.'''
toscatype = 'tosca.nodes.Compute'
def __init__(self, nodetemplate):
super(ToscaCompute, self).__init__(nodetemplate,
type='OS::Nova::Server')
# List with associated hot port resources with this server
self.assoc_port_resources = []
pass
def handle_properties(self):
self.properties.update(self.translate_compute_flavor_and_image(
self.nodetemplate.get_properties_objects(),
self.nodetemplate.get_capability('os')))
self.properties = self.translate_compute_flavor_and_image(
self.nodetemplate.get_properties_objects(),
self.nodetemplate.get_capability('os'))
self.properties['user_data_format'] = 'SOFTWARE_CONFIG'
# TODO(anyone): handle user key
# hardcoded here for testing
self.properties['key_name'] = 'userkey'
# To be reorganized later based on new development in Glance and Graffiti
def translate_compute_flavor_and_image(self, properties, os_capability):
hot_properties = {}
tosca_props = {}
os_cap_props = {}
image = None
flavor = None
if properties:
for prop in properties:
tosca_props[prop.name] = prop.value
flavor = self._best_flavor(tosca_props)
if os_capability:
for prop in os_capability.get_properties_objects():
os_cap_props[prop.name] = prop.value
image = self._best_image(os_cap_props)
hot_properties['flavor'] = flavor
hot_properties['image'] = image
# TODO(anyone): consider adding the flavor or image as a template
# parameter if no match is found.
return hot_properties
def _best_flavor(self, properties):
# start with all flavors
match_all = FLAVORS.keys()
# TODO(anyone): Handle the case where the value contains something like
# get_input instead of a value.
# flavors that fit the CPU count
cpu = properties.get('num_cpus')
match_cpu = self._match_flavors(match_all, FLAVORS, 'num_cpus', cpu)
# flavors that fit the mem size
mem = MemoryUnit.convert_unit_size_to_num(properties.get('mem_size'),
'MB')
match_cpu_mem = self._match_flavors(match_cpu, FLAVORS,
'mem_size', mem)
# flavors that fit the disk size
disk = MemoryUnit.convert_unit_size_to_num(properties.get('disk_size'),
'GB')
match_cpu_mem_disk = self._match_flavors(match_cpu_mem, FLAVORS,
'disk_size', disk)
# if multiple match, pick the flavor with the least memory
# the selection can be based on other heuristic, e.g. pick one with the
# least total resource
if len(match_cpu_mem_disk) > 1:
return self._least_flavor(match_cpu_mem_disk, FLAVORS, 'mem_size')
elif len(match_cpu_mem_disk) == 1:
return match_cpu_mem_disk[0]
else:
return None
def _best_image(self, properties):
match_all = IMAGES.keys()
architecture = properties.get('architecture')
match_arch = self._match_images(match_all, IMAGES,
'architecture', architecture)
type = properties.get('type')
match_type = self._match_images(match_arch, IMAGES, 'type', type)
distribution = properties.get('distribution')
match_distribution = self._match_images(match_type, IMAGES,
'distribution',
distribution)
version = properties.get('version')
match_version = self._match_images(match_distribution, IMAGES,
'version', version)
if len(match_version):
return list(match_version)[0]
def _match_flavors(self, this_list, this_dict, attr, size):
'''Return from this list all flavors matching the attribute size.'''
if not size:
return this_list
matching_flavors = []
for flavor in this_list:
if isinstance(size, int):
if this_dict[flavor][attr] >= size:
matching_flavors.append(flavor)
return matching_flavors
def _least_flavor(self, this_list, this_dict, attr):
'''Return from this list the flavor with the smallest attr.'''
least_flavor = this_list[0]
for flavor in this_list:
if this_dict[flavor][attr] < this_dict[least_flavor][attr]:
least_flavor = flavor
return least_flavor
def _match_images(self, this_list, this_dict, attr, prop):
if not prop:
return this_list
matching_images = []
for image in this_list:
if this_dict[image][attr] == str(prop):
matching_images.append(image)
return matching_images
def get_hot_attribute(self, attribute, args):
attr = {}
# Convert from a TOSCA attribute for a nodetemplate to a HOT
# attribute for the matching resource. Unless there is additional
# runtime support, this should be a one to one mapping.
# Note: We treat private and public IP addresses equally, but
# this will change in the future when TOSCA starts to support
# multiple private/public IP addresses.
if attribute == 'private_address' or \
attribute == 'public_address':
attr['get_attr'] = [self.name, 'networks', 'private', 0]
return attr