
The tables were interpreting the stats in a wrong way, for some stats it's not even easily possible to get those stats. We need to go through each statistic separately and document it in the Ceilometer docs first. Then it's more likely that these table stats will be distributed in various tables in dashboard in the form of sparklines so these pages won't be needed. Fixes bug 1249279 Change-Id: Ib8c110f5d66fae50df12f8f0beeb99c2b2d00bf6
650 lines
25 KiB
Python
650 lines
25 KiB
Python
# vim: tabstop=4 shiftwidth=4 softtabstop=4
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import logging
|
|
import threading
|
|
|
|
from ceilometerclient import client as ceilometer_client
|
|
from django.conf import settings # noqa
|
|
|
|
from openstack_dashboard.api import base
|
|
from openstack_dashboard.api import keystone
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
|
|
|
|
def is_iterable(var):
|
|
"""Return True if the given is list or tuple."""
|
|
|
|
return (isinstance(var, (list, tuple)) or
|
|
issubclass(var.__class__, (list, tuple)))
|
|
|
|
|
|
def make_query(user_id=None, tenant_id=None, resource_id=None,
|
|
user_ids=None, tenant_ids=None, resource_ids=None):
|
|
"""Returns query built form given parameters.
|
|
|
|
This query can be then used for querying resources, meters and
|
|
statistics.
|
|
|
|
:Parameters:
|
|
- `user_id`: user_id, has a priority over list of ids
|
|
- `tenant_id`: tenant_id, has a priority over list of ids
|
|
- `resource_id`: resource_id, has a priority over list of ids
|
|
- `user_ids`: list of user_ids
|
|
- `tenant_ids`: list of tenant_ids
|
|
- `resource_ids`: list of resource_ids
|
|
"""
|
|
user_ids = user_ids or []
|
|
tenant_ids = tenant_ids or []
|
|
resource_ids = resource_ids or []
|
|
|
|
query = []
|
|
if user_id:
|
|
user_ids = [user_id]
|
|
for u_id in user_ids:
|
|
query.append({"field": "user_id", "op": "eq", "value": u_id})
|
|
|
|
if tenant_id:
|
|
tenant_ids = [tenant_id]
|
|
for t_id in tenant_ids:
|
|
query.append({"field": "project_id", "op": "eq", "value": t_id})
|
|
|
|
if resource_id:
|
|
resource_ids = [resource_id]
|
|
for r_id in resource_ids:
|
|
query.append({"field": "resource_id", "op": "eq", "value": r_id})
|
|
|
|
return query
|
|
|
|
|
|
class Meter(base.APIResourceWrapper):
|
|
"""Represents one Ceilometer meter."""
|
|
_attrs = ['name', 'type', 'unit', 'resource_id', 'user_id',
|
|
'project_id']
|
|
|
|
|
|
class Resource(base.APIResourceWrapper):
|
|
"""Represents one Ceilometer resource."""
|
|
_attrs = ['resource_id', 'source', 'user_id', 'project_id', 'metadata',
|
|
'links']
|
|
|
|
def __init__(self, apiresource, ceilometer_usage=None):
|
|
super(Resource, self).__init__(apiresource)
|
|
|
|
# Save empty strings to IDs rather then None, sop it gets
|
|
# serialized correctly. We don't want 'None' strings.
|
|
self.project_id = self.project_id or ""
|
|
self.user_id = self.user_id or ""
|
|
self.resource_id = self.resource_id or ""
|
|
|
|
self._id = "%s__%s__%s" % (self.project_id,
|
|
self.user_id,
|
|
self.resource_id)
|
|
|
|
# TODO(lsmola) make parallel obtaining of tenant and user
|
|
# make the threading here, thread join into resource_list
|
|
if ceilometer_usage and self.project_id:
|
|
self._tenant = ceilometer_usage.get_tenant(self.project_id)
|
|
else:
|
|
self._tenant = None
|
|
|
|
if ceilometer_usage and self.user_id:
|
|
self._user = ceilometer_usage.get_user(self.user_id)
|
|
else:
|
|
self._user = None
|
|
|
|
self._query = make_query(tenant_id=self.project_id,
|
|
user_id=self.user_id,
|
|
resource_id=self.resource_id)
|
|
|
|
@property
|
|
def name(self):
|
|
name = self.metadata.get("name", None)
|
|
display_name = self.metadata.get("display_name", None)
|
|
return name or display_name or ""
|
|
|
|
@property
|
|
def id(self):
|
|
return self._id
|
|
|
|
@property
|
|
def tenant(self):
|
|
return self._tenant
|
|
|
|
@property
|
|
def user(self):
|
|
return self._user
|
|
|
|
@property
|
|
def resource(self):
|
|
return self.resource_id
|
|
|
|
@property
|
|
def query(self):
|
|
return self._query
|
|
|
|
|
|
class ResourceAggregate(Resource):
|
|
"""Represents aggregate of more resources together.
|
|
|
|
Aggregate of resources can be obtain by specifing
|
|
multiple ids in one parameter or by not specifying
|
|
one parameter.
|
|
Or it can be specified by query directly.
|
|
|
|
Example:
|
|
We obtain can have aggregate of resources by specifying
|
|
multiple resource_ids in resource_id parameter in init.
|
|
Or we can specify only tenant_id, which will return
|
|
all resources of that tenant.
|
|
"""
|
|
|
|
def __init__(self, tenant_id=None, user_id=None, resource_id=None,
|
|
tenant_ids=None, user_ids=None, resource_ids=None,
|
|
ceilometer_usage=None, query=None, identifier=None):
|
|
|
|
self._id = identifier
|
|
|
|
self.tenant_id = None
|
|
self.user_id = None
|
|
self.resource_id = None
|
|
|
|
if query:
|
|
self._query = query
|
|
else:
|
|
# TODO(lsmola) make parallel obtaining of tenant and user
|
|
# make the threading here, thread join into resource_list
|
|
if (ceilometer_usage and tenant_id):
|
|
self.tenant_id = tenant_id
|
|
self._tenant = ceilometer_usage.get_tenant(tenant_id)
|
|
else:
|
|
self._tenant = None
|
|
|
|
if (ceilometer_usage and user_id):
|
|
self.user_id = user_id
|
|
self._user = ceilometer_usage.get_user(user_id)
|
|
else:
|
|
self._user = None
|
|
|
|
if (resource_id):
|
|
self.resource_id = resource_id
|
|
|
|
self._query = make_query(tenant_id=tenant_id, user_id=user_id,
|
|
resource_id=resource_id, tenant_ids=tenant_ids,
|
|
user_ids=user_ids, resource_ids=resource_ids)
|
|
|
|
@property
|
|
def id(self):
|
|
return self._id
|
|
|
|
|
|
class Sample(base.APIResourceWrapper):
|
|
"""Represents one Ceilometer sample."""
|
|
|
|
_attrs = ['counter_name', 'user_id', 'resource_id', 'timestamp',
|
|
'resource_metadata', 'source', 'counter_unit', 'counter_volume',
|
|
'project_id', 'counter_type', 'resource_metadata']
|
|
|
|
@property
|
|
def instance(self):
|
|
display_name = self.resource_metadata.get('display_name', None)
|
|
instance_id = self.resource_metadata.get('instance_id', None)
|
|
return display_name or instance_id
|
|
|
|
@property
|
|
def name(self):
|
|
name = self.resource_metadata.get("name", None)
|
|
display_name = self.resource_metadata.get("display_name", None)
|
|
return name or display_name or ""
|
|
|
|
|
|
class Statistic(base.APIResourceWrapper):
|
|
"""Represents one Ceilometer statistic."""
|
|
|
|
_attrs = ['period', 'period_start', 'period_end',
|
|
'count', 'min', 'max', 'sum', 'avg',
|
|
'duration', 'duration_start', 'duration_end']
|
|
|
|
|
|
def ceilometerclient(request):
|
|
"""Initialization of Ceilometer client."""
|
|
|
|
endpoint = base.url_for(request, 'metering')
|
|
insecure = getattr(settings, 'OPENSTACK_SSL_NO_VERIFY', False)
|
|
cacert = getattr(settings, 'OPENSTACK_SSL_CACERT', None)
|
|
LOG.debug('ceilometerclient connection created using token "%s" '
|
|
'and endpoint "%s"' % (request.user.token.id, endpoint))
|
|
return ceilometer_client.Client('2', endpoint,
|
|
token=(lambda: request.user.token.id),
|
|
insecure=insecure,
|
|
ca_file=cacert)
|
|
|
|
|
|
def resource_list(request, query=None, ceilometer_usage_object=None):
|
|
"""List the resources."""
|
|
resources = ceilometerclient(request).\
|
|
resources.list(q=query)
|
|
return [Resource(r, ceilometer_usage_object) for r in resources]
|
|
|
|
|
|
def sample_list(request, meter_name, query=None):
|
|
"""List the samples for this meters."""
|
|
samples = ceilometerclient(request).samples.list(meter_name=meter_name,
|
|
q=query)
|
|
return [Sample(s) for s in samples]
|
|
|
|
|
|
def meter_list(request, query=None):
|
|
"""List the user's meters."""
|
|
meters = ceilometerclient(request).meters.list(query)
|
|
return [Meter(m) for m in meters]
|
|
|
|
|
|
def statistic_list(request, meter_name, query=None, period=None):
|
|
"""List of statistics."""
|
|
statistics = ceilometerclient(request).\
|
|
statistics.list(meter_name=meter_name, q=query, period=period)
|
|
return [Statistic(s) for s in statistics]
|
|
|
|
|
|
class ThreadedUpdateResourceWithStatistics(threading.Thread):
|
|
"""Multithread wrapper for update_with_statistics method of
|
|
resource_usage.
|
|
|
|
A join logic is placed in process_list class method. All resources
|
|
will have its statistics attribute filled in separate threads.
|
|
|
|
The resource_usage object is shared between threads. Each thread is
|
|
updating one Resource.
|
|
|
|
:Parameters:
|
|
- `resource`: Resource or ResourceAggregate object, that will
|
|
be filled by statistic data.
|
|
- `resources`: List of Resource or ResourceAggregate object,
|
|
that will be filled by statistic data.
|
|
- `resource_usage`: Wrapping resource usage object, that holds
|
|
all statistics data.
|
|
- `meter_names`: List of meter names of the statistics we want.
|
|
- `period`: In seconds. If no period is given, only one aggregate
|
|
statistic is returned. If given, a faceted result will be
|
|
returned, divided into given periods. Periods with no
|
|
data are ignored.
|
|
- `stats_attr`: String representing the attribute name of the stats.
|
|
E.g. (avg, max, min...) If None is given, whole
|
|
statistic object is returned,
|
|
- `additional_query`: Additional query for the statistics.
|
|
E.g. timespan, etc.
|
|
"""
|
|
# TODO(lsmola) Can be removed once Ceilometer supports sample-api
|
|
# and group-by, so all of this optimization will not be necessary.
|
|
# It is planned somewhere to I.
|
|
|
|
def __init__(self, resource_usage, resource, meter_names=None,
|
|
period=None, filter_func=None, stats_attr=None,
|
|
additional_query=None):
|
|
super(ThreadedUpdateResourceWithStatistics, self).__init__()
|
|
self.resource_usage = resource_usage
|
|
self.resource = resource
|
|
self.meter_names = meter_names
|
|
self.period = period
|
|
self.stats_attr = stats_attr
|
|
self.additional_query = additional_query
|
|
|
|
def run(self):
|
|
# Run the job
|
|
self.resource_usage.update_with_statistics(self.resource,
|
|
meter_names=self.meter_names, period=self.period,
|
|
stats_attr=self.stats_attr, additional_query=self.additional_query)
|
|
|
|
@classmethod
|
|
def process_list(cls, resource_usage, resources, meter_names=None,
|
|
period=None, filter_func=None, stats_attr=None,
|
|
additional_query=None):
|
|
threads = []
|
|
|
|
for resource in resources:
|
|
# add statistics data into resource
|
|
thread = cls(resource_usage, resource, meter_names=meter_names,
|
|
period=period, stats_attr=stats_attr,
|
|
additional_query=additional_query)
|
|
thread.start()
|
|
threads.append(thread)
|
|
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
|
|
class CeilometerUsage(object):
|
|
"""Represents wrapper of any Ceilometer queries.
|
|
|
|
One instance of this class should be shared between resources
|
|
as this class provides a place where users and tenants are
|
|
cached. So there are no duplicate queries to API.
|
|
|
|
This class also wraps Ceilometer API calls and provides parallel
|
|
HTTP calls to API.
|
|
|
|
This class should also serve as reasonable abstraction, that will
|
|
cover huge amount of optimization due to optimization of Ceilometer
|
|
service, without changing of the interface.
|
|
"""
|
|
|
|
def __init__(self, request):
|
|
self._request = request
|
|
|
|
# Cached users and tenants.
|
|
self._users = {}
|
|
self._tenants = {}
|
|
|
|
def get_user(self, user_id):
|
|
"""Returns user fetched form API
|
|
|
|
Caching the result, so it doesn't contact API twice with the
|
|
same query
|
|
"""
|
|
|
|
user = self._users.get(user_id, None)
|
|
if not user:
|
|
user = keystone.user_get(self._request, user_id)
|
|
# caching the user, for later use
|
|
self._users[user_id] = user
|
|
return user
|
|
|
|
def preload_all_users(self):
|
|
"""Preloads all users into dictionary.
|
|
|
|
It's more effective to preload all users, rather the fetching many
|
|
users by separate API get calls.
|
|
"""
|
|
|
|
users = keystone.user_list(self._request)
|
|
# Cache all users on right indexes, this is more effective than to
|
|
# obtain large number of users one by one by keystone.user_get
|
|
for u in users:
|
|
self._users[u.id] = u
|
|
|
|
def get_tenant(self, tenant_id):
|
|
"""Returns tenant fetched form API.
|
|
|
|
Caching the result, so it doesn't contact API twice with the
|
|
same query
|
|
"""
|
|
|
|
tenant = self._tenants.get(tenant_id, None)
|
|
if not tenant:
|
|
tenant = keystone.tenant_get(self._request, tenant_id)
|
|
# caching the tenant for later use
|
|
self._tenants[tenant_id] = tenant
|
|
return tenant
|
|
|
|
def preload_all_tenants(self):
|
|
"""Preloads all teannts into dictionary.
|
|
|
|
It's more effective to preload all tenants, rather the fetching many
|
|
tenants by separate API get calls.
|
|
"""
|
|
|
|
tenants, more = keystone.tenant_list(self._request)
|
|
# Cache all tenants on right indexes, this is more effective than to
|
|
# obtain large number of tenants one by one by keystone.tenant_get
|
|
for t in tenants:
|
|
self._tenants[t.id] = t
|
|
|
|
def global_data_get(self, used_cls=None, query=None,
|
|
with_statistics=False, additional_query=None,
|
|
with_users_and_tenants=True):
|
|
"""Obtaining a resources for table view.
|
|
|
|
It obtains resources with statistics data according to declaration
|
|
in used_cls class.
|
|
|
|
:Parameters:
|
|
- `user_cls`: Class wrapper for usage data. It acts as wrapper for
|
|
settings needed. See the call of this method for
|
|
details.
|
|
- `query`: Explicit query definition for fetching the resources. If
|
|
no query is provided, it takes a default_query from
|
|
used_cls. If no default query is provided, it fetches
|
|
all the resources and filters them by meters defined
|
|
in used_cls.
|
|
- `with_statistic`: Define whether statistics data from the meters
|
|
defined in used_cls should be fetched.
|
|
Can be used to first obtain only the pure
|
|
resources, then with the statistics data by
|
|
AJAX.
|
|
- `additional_query`: Additional query for the statistics.
|
|
E.g. timespan, etc.
|
|
- `with_users_and_tenants`: If true a user and a tenant object will
|
|
be added to each resource object.
|
|
"""
|
|
|
|
default_query = used_cls.default_query
|
|
query = query or default_query
|
|
filter_func = None
|
|
|
|
def filter_resources(resource):
|
|
"""Method for filtering resources by theirs links.rel attr.
|
|
|
|
The links.rel attributes contains all meters the resource have.
|
|
"""
|
|
for link in resource.links:
|
|
if link['rel'] in used_cls.meters:
|
|
return True
|
|
return False
|
|
|
|
if not query:
|
|
# Not all resource types can be obtain by query, if there is not
|
|
# a query, we are filtering all resources by this function.
|
|
filter_func = filter_resources
|
|
|
|
if with_statistics:
|
|
# Will add statistic data into resources.
|
|
resources = self.resources_with_statistics(
|
|
query,
|
|
used_cls.meters,
|
|
filter_func=filter_func,
|
|
stats_attr=used_cls.stats_attr,
|
|
additional_query=additional_query,
|
|
with_users_and_tenants=with_users_and_tenants)
|
|
else:
|
|
# Will load only resources without statistical data.
|
|
resources = self.resources(query, filter_func=filter_func,
|
|
with_users_and_tenants=with_users_and_tenants)
|
|
|
|
return [used_cls(resource) for resource in resources]
|
|
|
|
def query_from_object_id(self, object_id):
|
|
"""Obtaining a query from resource id.
|
|
|
|
Query can be then used to identify a resource in resources or meters
|
|
API calls. ID is being built in the Resource initializer, or returned
|
|
by Datatable into UpdateRow functionality.
|
|
"""
|
|
try:
|
|
tenant_id, user_id, resource_id = object_id.split("__")
|
|
except ValueError:
|
|
return []
|
|
|
|
return make_query(tenant_id=tenant_id, user_id=user_id,
|
|
resource_id=resource_id)
|
|
|
|
def update_with_statistics(self, resource, meter_names=None, period=None,
|
|
stats_attr=None, additional_query=None):
|
|
"""Adding statistical data into one Resource or ResourceAggregate.
|
|
|
|
It adds each statistic of each meter_names into the resource
|
|
attributes. Attribute name is the meter name with replaced '.' to '_'.
|
|
|
|
:Parameters:
|
|
- `resource`: Resource or ResourceAggregate object, that will
|
|
be filled by statistic data.
|
|
- `meter_names`: List of meter names of which we want the
|
|
statistics.
|
|
- `period`: In seconds. If no period is given, only one aggregate
|
|
statistic is returned. If given a faceted result will be
|
|
returned, dividend into given periods. Periods with no
|
|
data are ignored.
|
|
- `stats_attr`: String representing the specific name of the stats.
|
|
E.g. (avg, max, min...) If defined, meter attribute
|
|
will contain just the one value. If None is given,
|
|
meter attribute will contain the whole Statistic
|
|
object.
|
|
- `additional_query`: Additional query for the statistics.
|
|
E.g. timespan, etc.
|
|
"""
|
|
|
|
if not meter_names:
|
|
raise ValueError("meter_names and resource must be defined to be"
|
|
"able to obtain the statistics.")
|
|
|
|
# query for identifying one resource in meters
|
|
query = resource.query
|
|
if additional_query:
|
|
if not is_iterable(additional_query):
|
|
raise ValueError("Additional query must be list of"
|
|
" conditions. See the docs for format.")
|
|
query = query + additional_query
|
|
|
|
# TODO(lsmola) thread for each meter will be probably overkill
|
|
# but I should test lets say thread pool with 100 of threads
|
|
# and apply it only to this code.
|
|
# Though I do expect Ceilometer will support bulk requests,
|
|
# so all of this optimization will not be necessary.
|
|
for meter in meter_names:
|
|
statistics = statistic_list(self._request, meter,
|
|
query=query, period=period)
|
|
meter = meter.replace(".", "_")
|
|
if statistics:
|
|
if stats_attr:
|
|
# I want to load only a specific attribute
|
|
setattr(resource, meter,
|
|
getattr(statistics[0], stats_attr, None))
|
|
else:
|
|
# I want a dictionary of all statistics
|
|
setattr(resource, meter, statistics)
|
|
else:
|
|
setattr(resource, meter, None)
|
|
|
|
return resource
|
|
|
|
def resources(self, query=None, filter_func=None,
|
|
with_users_and_tenants=False):
|
|
"""Obtaining resources with the query or filter_func.
|
|
|
|
Obtains resources and also fetch tenants and users associated
|
|
with those resources if with_users_and_tenants flag is true.
|
|
|
|
:Parameters:
|
|
- `query`: Query for fetching the Ceilometer Resources.
|
|
- `filter_func`: Callable for filtering of the obtained
|
|
resources.
|
|
- `with_users_and_tenants`: If true a user and a tenant object will
|
|
be added to each resource object.
|
|
"""
|
|
if with_users_and_tenants:
|
|
ceilometer_usage_object = self
|
|
else:
|
|
ceilometer_usage_object = None
|
|
resources = resource_list(self._request,
|
|
query=query, ceilometer_usage_object=ceilometer_usage_object)
|
|
if filter_func:
|
|
resources = [resource for resource in resources if
|
|
filter_func(resource)]
|
|
|
|
return resources
|
|
|
|
def resources_with_statistics(self, query=None, meter_names=None,
|
|
period=None, filter_func=None,
|
|
stats_attr=None, additional_query=None,
|
|
with_users_and_tenants=False):
|
|
"""Obtaining resources with statistics data inside.
|
|
|
|
:Parameters:
|
|
- `query`: Query for fetching the Ceilometer Resources.
|
|
- `filter_func`: Callable for filtering of the obtained
|
|
resources.
|
|
- `meter_names`: List of meter names of which we want the
|
|
statistics.
|
|
- `period`: In seconds. If no period is given, only one aggregate
|
|
statistic is returned. If given, a faceted result will
|
|
be returned, divided into given periods. Periods with
|
|
no data are ignored.
|
|
- `stats_attr`: String representing the specific name of the stats.
|
|
E.g. (avg, max, min...) If defined, meter attribute
|
|
will contain just the one value. If None is given,
|
|
meter attribute will contain the whole Statistic
|
|
object.
|
|
- `additional_query`: Additional query for the statistics.
|
|
E.g. timespan, etc.
|
|
- `with_users_and_tenants`: If true a user and a tenant object will
|
|
be added to each resource object.
|
|
"""
|
|
|
|
resources = self.resources(query, filter_func=filter_func,
|
|
with_users_and_tenants=with_users_and_tenants)
|
|
|
|
ThreadedUpdateResourceWithStatistics.process_list(self, resources,
|
|
meter_names=meter_names, period=period, stats_attr=stats_attr,
|
|
additional_query=additional_query)
|
|
|
|
return resources
|
|
|
|
def resource_aggregates(self, queries=None):
|
|
"""Obtaining resource aggregates with queries.
|
|
|
|
Representing a resource aggregate by query is a most general way
|
|
how to obtain a resource aggregates.
|
|
|
|
:Parameters:
|
|
- `queries`: Dictionary of named queries that defines a bulk of
|
|
resource aggregates.
|
|
"""
|
|
resource_aggregates = []
|
|
for identifier, query in queries.items():
|
|
resource_aggregates.append(ResourceAggregate(query=query,
|
|
ceilometer_usage=None,
|
|
identifier=identifier))
|
|
return resource_aggregates
|
|
|
|
def resource_aggregates_with_statistics(self, queries=None,
|
|
meter_names=None, period=None, filter_func=None, stats_attr=None,
|
|
additional_query=None):
|
|
"""Obtaining resource aggregates with statistics data inside.
|
|
|
|
:Parameters:
|
|
- `queries`: Dictionary of named queries that defines a bulk of
|
|
resource aggregates.
|
|
- `meter_names`: List of meter names of which we want the
|
|
statistics.
|
|
- `period`: In seconds. If no period is given, only one aggregate
|
|
statistic is returned. If given, a faceted result will
|
|
be returned, divided into given periods. Periods with
|
|
no data are ignored.
|
|
- `stats_attr`: String representing the specific name of the stats.
|
|
E.g. (avg, max, min...) If defined, meter attribute
|
|
will contain just the one value. If None is given,
|
|
meter attribute will contain the whole Statistic
|
|
object.
|
|
- `additional_query`: Additional query for the statistics.
|
|
E.g. timespan, etc.
|
|
"""
|
|
resource_aggregates = self.resource_aggregates(queries)
|
|
|
|
ThreadedUpdateResourceWithStatistics.process_list(self,
|
|
resource_aggregates, meter_names=meter_names, period=period,
|
|
stats_attr=stats_attr, additional_query=additional_query)
|
|
|
|
return resource_aggregates
|