Ladislav Smola 8f2ebe66d6 Introduce safer access to resource meters
Storing of meters in the wrapper object attributes is bad. It
can lead to name conflicts, which can theoretically result
in weird bugs.

Change-Id: I7b1a248be52721b0401fba7bf976b9c4e63f71ba
Implements: blueprint ceilometer-api-enhancements
2014-06-05 10:57:28 +02:00

1186 lines
43 KiB
Python

# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
import threading
from ceilometerclient import client as ceilometer_client
from django.conf import settings
from django.utils import datastructures
from django.utils.translation import ugettext_lazy as _
from horizon import exceptions
from openstack_dashboard.api import base
from openstack_dashboard.api import keystone
from openstack_dashboard.api import nova
LOG = logging.getLogger(__name__)
def get_flavor_names(request):
# TODO(lsmola) The flavors can be set per project,
# so it should show only valid ones.
try:
flavors = nova.flavor_list(request, None)
return [f.name for f in flavors]
except Exception:
return ['m1.tiny', 'm1.small', 'm1.medium',
'm1.large', 'm1.xlarge']
def is_iterable(var):
"""Return True if the given is list or tuple."""
return (isinstance(var, (list, tuple)) or
issubclass(var.__class__, (list, tuple)))
def make_query(user_id=None, tenant_id=None, resource_id=None,
user_ids=None, tenant_ids=None, resource_ids=None):
"""Returns query built form given parameters.
This query can be then used for querying resources, meters and
statistics.
:Parameters:
- `user_id`: user_id, has a priority over list of ids
- `tenant_id`: tenant_id, has a priority over list of ids
- `resource_id`: resource_id, has a priority over list of ids
- `user_ids`: list of user_ids
- `tenant_ids`: list of tenant_ids
- `resource_ids`: list of resource_ids
"""
user_ids = user_ids or []
tenant_ids = tenant_ids or []
resource_ids = resource_ids or []
query = []
if user_id:
user_ids = [user_id]
for u_id in user_ids:
query.append({"field": "user_id", "op": "eq", "value": u_id})
if tenant_id:
tenant_ids = [tenant_id]
for t_id in tenant_ids:
query.append({"field": "project_id", "op": "eq", "value": t_id})
if resource_id:
resource_ids = [resource_id]
for r_id in resource_ids:
query.append({"field": "resource_id", "op": "eq", "value": r_id})
return query
class Meter(base.APIResourceWrapper):
"""Represents one Ceilometer meter."""
_attrs = ['name', 'type', 'unit', 'resource_id', 'user_id',
'project_id']
def __init__(self, apiresource):
super(Meter, self).__init__(apiresource)
self._label = self.name
self._description = ""
def augment(self, label=None, description=None):
if label:
self._label = label
if description:
self._description = description
@property
def description(self):
return self._description
@property
def label(self):
return self._label
class Resource(base.APIResourceWrapper):
"""Represents one Ceilometer resource."""
_attrs = ['resource_id', 'source', 'user_id', 'project_id', 'metadata',
'links']
def __init__(self, apiresource, ceilometer_usage=None):
super(Resource, self).__init__(apiresource)
# Save empty strings to IDs rather than None, so it gets
# serialized correctly. We don't want 'None' strings.
self.project_id = self.project_id or ""
self.user_id = self.user_id or ""
self.resource_id = self.resource_id or ""
self._id = "%s__%s__%s" % (self.project_id,
self.user_id,
self.resource_id)
# Meters with statistics data
self._meters = {}
# TODO(lsmola) make parallel obtaining of tenant and user
# make the threading here, thread join into resource_list
if ceilometer_usage and self.project_id:
self._tenant = ceilometer_usage.get_tenant(self.project_id)
else:
self._tenant = None
if ceilometer_usage and self.user_id:
self._user = ceilometer_usage.get_user(self.user_id)
else:
self._user = None
self._query = make_query(tenant_id=self.project_id,
user_id=self.user_id,
resource_id=self.resource_id)
@property
def name(self):
name = self.metadata.get("name", None)
display_name = self.metadata.get("display_name", None)
return name or display_name or ""
@property
def id(self):
return self._id
@property
def tenant(self):
return self._tenant
@property
def user(self):
return self._user
@property
def resource(self):
return self.resource_id
@property
def query(self):
return self._query
@property
def meters(self):
return self._meters
def get_meter(self, meter_name):
return self._meters.get(meter_name, None)
def set_meter(self, meter_name, value):
self._meters[meter_name] = value
class ResourceAggregate(Resource):
"""Represents aggregate of more resources together.
Aggregate of resources can be obtain by specifing
multiple ids in one parameter or by not specifying
one parameter.
Or it can be specified by query directly.
Example:
We obtain can have aggregate of resources by specifying
multiple resource_ids in resource_id parameter in init.
Or we can specify only tenant_id, which will return
all resources of that tenant.
"""
def __init__(self, tenant_id=None, user_id=None, resource_id=None,
tenant_ids=None, user_ids=None, resource_ids=None,
ceilometer_usage=None, query=None, identifier=None):
self._id = identifier
self.tenant_id = None
self.user_id = None
self.resource_id = None
# Meters with statistics data
self._meters = {}
if query:
self._query = query
else:
# TODO(lsmola) make parallel obtaining of tenant and user
# make the threading here, thread join into resource_list
if (ceilometer_usage and tenant_id):
self.tenant_id = tenant_id
self._tenant = ceilometer_usage.get_tenant(tenant_id)
else:
self._tenant = None
if (ceilometer_usage and user_id):
self.user_id = user_id
self._user = ceilometer_usage.get_user(user_id)
else:
self._user = None
if (resource_id):
self.resource_id = resource_id
self._query = make_query(tenant_id=tenant_id, user_id=user_id,
resource_id=resource_id, tenant_ids=tenant_ids,
user_ids=user_ids, resource_ids=resource_ids)
@property
def id(self):
return self._id
class Sample(base.APIResourceWrapper):
"""Represents one Ceilometer sample."""
_attrs = ['counter_name', 'user_id', 'resource_id', 'timestamp',
'resource_metadata', 'source', 'counter_unit', 'counter_volume',
'project_id', 'counter_type', 'resource_metadata']
@property
def instance(self):
display_name = self.resource_metadata.get('display_name', None)
instance_id = self.resource_metadata.get('instance_id', None)
return display_name or instance_id
@property
def name(self):
name = self.resource_metadata.get("name", None)
display_name = self.resource_metadata.get("display_name", None)
return name or display_name or ""
class Statistic(base.APIResourceWrapper):
"""Represents one Ceilometer statistic."""
_attrs = ['period', 'period_start', 'period_end',
'count', 'min', 'max', 'sum', 'avg',
'duration', 'duration_start', 'duration_end']
def ceilometerclient(request):
"""Initialization of Ceilometer client."""
endpoint = base.url_for(request, 'metering')
insecure = getattr(settings, 'OPENSTACK_SSL_NO_VERIFY', False)
cacert = getattr(settings, 'OPENSTACK_SSL_CACERT', None)
LOG.debug('ceilometerclient connection created using token "%s" '
'and endpoint "%s"' % (request.user.token.id, endpoint))
return ceilometer_client.Client('2', endpoint,
token=(lambda: request.user.token.id),
insecure=insecure,
ca_file=cacert)
def resource_list(request, query=None, ceilometer_usage_object=None):
"""List the resources."""
resources = ceilometerclient(request).\
resources.list(q=query)
return [Resource(r, ceilometer_usage_object) for r in resources]
def sample_list(request, meter_name, query=None):
"""List the samples for this meters."""
samples = ceilometerclient(request).samples.list(meter_name=meter_name,
q=query)
return [Sample(s) for s in samples]
def meter_list(request, query=None):
"""List the user's meters."""
meters = ceilometerclient(request).meters.list(query)
return [Meter(m) for m in meters]
def statistic_list(request, meter_name, query=None, period=None):
"""List of statistics."""
statistics = ceilometerclient(request).\
statistics.list(meter_name=meter_name, q=query, period=period)
return [Statistic(s) for s in statistics]
class ThreadedUpdateResourceWithStatistics(threading.Thread):
"""Multithread wrapper for update_with_statistics method of
resource_usage.
A join logic is placed in process_list class method. All resources
will have its statistics attribute filled in separate threads.
The resource_usage object is shared between threads. Each thread is
updating one Resource.
:Parameters:
- `resource`: Resource or ResourceAggregate object, that will
be filled by statistic data.
- `resources`: List of Resource or ResourceAggregate object,
that will be filled by statistic data.
- `resource_usage`: Wrapping resource usage object, that holds
all statistics data.
- `meter_names`: List of meter names of the statistics we want.
- `period`: In seconds. If no period is given, only one aggregate
statistic is returned. If given, a faceted result will be
returned, divided into given periods. Periods with no
data are ignored.
- `stats_attr`: String representing the attribute name of the stats.
E.g. (avg, max, min...) If None is given, whole
statistic object is returned,
- `additional_query`: Additional query for the statistics.
E.g. timespan, etc.
"""
# TODO(lsmola) Can be removed once Ceilometer supports sample-api
# and group-by, so all of this optimization will not be necessary.
# It is planned somewhere to I.
def __init__(self, resource_usage, resource, meter_names=None,
period=None, filter_func=None, stats_attr=None,
additional_query=None):
super(ThreadedUpdateResourceWithStatistics, self).__init__()
self.resource_usage = resource_usage
self.resource = resource
self.meter_names = meter_names
self.period = period
self.stats_attr = stats_attr
self.additional_query = additional_query
def run(self):
# Run the job
self.resource_usage.update_with_statistics(self.resource,
meter_names=self.meter_names, period=self.period,
stats_attr=self.stats_attr, additional_query=self.additional_query)
@classmethod
def process_list(cls, resource_usage, resources, meter_names=None,
period=None, filter_func=None, stats_attr=None,
additional_query=None):
threads = []
for resource in resources:
# add statistics data into resource
thread = cls(resource_usage, resource, meter_names=meter_names,
period=period, stats_attr=stats_attr,
additional_query=additional_query)
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
class CeilometerUsage(object):
"""Represents wrapper of any Ceilometer queries.
One instance of this class should be shared between resources
as this class provides a place where users and tenants are
cached. So there are no duplicate queries to API.
This class also wraps Ceilometer API calls and provides parallel
HTTP calls to API.
This class should also serve as reasonable abstraction, that will
cover huge amount of optimization due to optimization of Ceilometer
service, without changing of the interface.
"""
def __init__(self, request):
self._request = request
# Cached users and tenants.
self._users = {}
self._tenants = {}
def get_user(self, user_id):
"""Returns user fetched form API
Caching the result, so it doesn't contact API twice with the
same query
"""
user = self._users.get(user_id, None)
if not user:
user = keystone.user_get(self._request, user_id)
# caching the user, for later use
self._users[user_id] = user
return user
def preload_all_users(self):
"""Preloads all users into dictionary.
It's more effective to preload all users, rather the fetching many
users by separate API get calls.
"""
users = keystone.user_list(self._request)
# Cache all users on right indexes, this is more effective than to
# obtain large number of users one by one by keystone.user_get
for u in users:
self._users[u.id] = u
def get_tenant(self, tenant_id):
"""Returns tenant fetched form API.
Caching the result, so it doesn't contact API twice with the
same query
"""
tenant = self._tenants.get(tenant_id, None)
if not tenant:
tenant = keystone.tenant_get(self._request, tenant_id)
# caching the tenant for later use
self._tenants[tenant_id] = tenant
return tenant
def preload_all_tenants(self):
"""Preloads all teannts into dictionary.
It's more effective to preload all tenants, rather the fetching many
tenants by separate API get calls.
"""
tenants, more = keystone.tenant_list(self._request)
# Cache all tenants on right indexes, this is more effective than to
# obtain large number of tenants one by one by keystone.tenant_get
for t in tenants:
self._tenants[t.id] = t
def global_data_get(self, used_cls=None, query=None,
with_statistics=False, additional_query=None,
with_users_and_tenants=True):
"""Obtaining a resources for table view.
It obtains resources with statistics data according to declaration
in used_cls class.
:Parameters:
- `user_cls`: Class wrapper for usage data. It acts as wrapper for
settings needed. See the call of this method for
details.
- `query`: Explicit query definition for fetching the resources. If
no query is provided, it takes a default_query from
used_cls. If no default query is provided, it fetches
all the resources and filters them by meters defined
in used_cls.
- `with_statistic`: Define whether statistics data from the meters
defined in used_cls should be fetched.
Can be used to first obtain only the pure
resources, then with the statistics data by
AJAX.
- `additional_query`: Additional query for the statistics.
E.g. timespan, etc.
- `with_users_and_tenants`: If true a user and a tenant object will
be added to each resource object.
"""
default_query = used_cls.default_query
query = query or default_query
filter_func = None
def filter_resources(resource):
"""Method for filtering resources by theirs links.rel attr.
The links.rel attributes contains all meters the resource have.
"""
for link in resource.links:
if link['rel'] in used_cls.meters:
return True
return False
if not query:
# Not all resource types can be obtain by query, if there is not
# a query, we are filtering all resources by this function.
filter_func = filter_resources
if with_statistics:
# Will add statistic data into resources.
resources = self.resources_with_statistics(
query,
used_cls.meters,
filter_func=filter_func,
stats_attr=used_cls.stats_attr,
additional_query=additional_query,
with_users_and_tenants=with_users_and_tenants)
else:
# Will load only resources without statistical data.
resources = self.resources(query, filter_func=filter_func,
with_users_and_tenants=with_users_and_tenants)
return [used_cls(resource) for resource in resources]
def query_from_object_id(self, object_id):
"""Obtaining a query from resource id.
Query can be then used to identify a resource in resources or meters
API calls. ID is being built in the Resource initializer, or returned
by Datatable into UpdateRow functionality.
"""
try:
tenant_id, user_id, resource_id = object_id.split("__")
except ValueError:
return []
return make_query(tenant_id=tenant_id, user_id=user_id,
resource_id=resource_id)
def update_with_statistics(self, resource, meter_names=None, period=None,
stats_attr=None, additional_query=None):
"""Adding statistical data into one Resource or ResourceAggregate.
It adds each statistic of each meter_names into the resource
attributes. Attribute name is the meter name with replaced '.' to '_'.
:Parameters:
- `resource`: Resource or ResourceAggregate object, that will
be filled by statistic data.
- `meter_names`: List of meter names of which we want the
statistics.
- `period`: In seconds. If no period is given, only one aggregate
statistic is returned. If given a faceted result will be
returned, dividend into given periods. Periods with no
data are ignored.
- `stats_attr`: String representing the specific name of the stats.
E.g. (avg, max, min...) If defined, meter attribute
will contain just the one value. If None is given,
meter attribute will contain the whole Statistic
object.
- `additional_query`: Additional query for the statistics.
E.g. timespan, etc.
"""
if not meter_names:
raise ValueError("meter_names and resource must be defined to be"
"able to obtain the statistics.")
# query for identifying one resource in meters
query = resource.query
if additional_query:
if not is_iterable(additional_query):
raise ValueError("Additional query must be list of"
" conditions. See the docs for format.")
query = query + additional_query
# TODO(lsmola) thread for each meter will be probably overkill
# but I should test lets say thread pool with 100 of threads
# and apply it only to this code.
# Though I do expect Ceilometer will support bulk requests,
# so all of this optimization will not be necessary.
for meter in meter_names:
statistics = statistic_list(self._request, meter,
query=query, period=period)
meter = meter.replace(".", "_")
if statistics:
if stats_attr:
# I want to load only a specific attribute
resource.set_meter(
meter,
getattr(statistics[0], stats_attr, None))
else:
# I want a dictionary of all statistics
resource.set_meter(meter, statistics)
else:
resource.set_meter(meter, None)
return resource
def resources(self, query=None, filter_func=None,
with_users_and_tenants=False):
"""Obtaining resources with the query or filter_func.
Obtains resources and also fetch tenants and users associated
with those resources if with_users_and_tenants flag is true.
:Parameters:
- `query`: Query for fetching the Ceilometer Resources.
- `filter_func`: Callable for filtering of the obtained
resources.
- `with_users_and_tenants`: If true a user and a tenant object will
be added to each resource object.
"""
if with_users_and_tenants:
ceilometer_usage_object = self
else:
ceilometer_usage_object = None
resources = resource_list(self._request,
query=query, ceilometer_usage_object=ceilometer_usage_object)
if filter_func:
resources = [resource for resource in resources if
filter_func(resource)]
return resources
def resources_with_statistics(self, query=None, meter_names=None,
period=None, filter_func=None,
stats_attr=None, additional_query=None,
with_users_and_tenants=False):
"""Obtaining resources with statistics data inside.
:Parameters:
- `query`: Query for fetching the Ceilometer Resources.
- `filter_func`: Callable for filtering of the obtained
resources.
- `meter_names`: List of meter names of which we want the
statistics.
- `period`: In seconds. If no period is given, only one aggregate
statistic is returned. If given, a faceted result will
be returned, divided into given periods. Periods with
no data are ignored.
- `stats_attr`: String representing the specific name of the stats.
E.g. (avg, max, min...) If defined, meter attribute
will contain just the one value. If None is given,
meter attribute will contain the whole Statistic
object.
- `additional_query`: Additional query for the statistics.
E.g. timespan, etc.
- `with_users_and_tenants`: If true a user and a tenant object will
be added to each resource object.
"""
resources = self.resources(query, filter_func=filter_func,
with_users_and_tenants=with_users_and_tenants)
ThreadedUpdateResourceWithStatistics.process_list(self, resources,
meter_names=meter_names, period=period, stats_attr=stats_attr,
additional_query=additional_query)
return resources
def resource_aggregates(self, queries=None):
"""Obtaining resource aggregates with queries.
Representing a resource aggregate by query is a most general way
how to obtain a resource aggregates.
:Parameters:
- `queries`: Dictionary of named queries that defines a bulk of
resource aggregates.
"""
resource_aggregates = []
for identifier, query in queries.items():
resource_aggregates.append(ResourceAggregate(query=query,
ceilometer_usage=None,
identifier=identifier))
return resource_aggregates
def resource_aggregates_with_statistics(self, queries=None,
meter_names=None, period=None, filter_func=None, stats_attr=None,
additional_query=None):
"""Obtaining resource aggregates with statistics data inside.
:Parameters:
- `queries`: Dictionary of named queries that defines a bulk of
resource aggregates.
- `meter_names`: List of meter names of which we want the
statistics.
- `period`: In seconds. If no period is given, only one aggregate
statistic is returned. If given, a faceted result will
be returned, divided into given periods. Periods with
no data are ignored.
- `stats_attr`: String representing the specific name of the stats.
E.g. (avg, max, min...) If defined, meter attribute
will contain just the one value. If None is given,
meter attribute will contain the whole Statistic
object.
- `additional_query`: Additional query for the statistics.
E.g. timespan, etc.
"""
resource_aggregates = self.resource_aggregates(queries)
ThreadedUpdateResourceWithStatistics.process_list(self,
resource_aggregates, meter_names=meter_names, period=period,
stats_attr=stats_attr, additional_query=additional_query)
return resource_aggregates
def diff_lists(a, b):
if not a:
return []
elif not b:
return a
else:
return list(set(a) - set(b))
class Meters(object):
"""Class for listing of available meters
It is listing meters defined in this class that are available
in Ceilometer meter_list.
It is storing information that is not available in Ceilometer, i.e.
label, description.
"""
def __init__(self, request=None, ceilometer_meter_list=None):
# Storing the request.
self._request = request
# Storing the Ceilometer meter list
if ceilometer_meter_list:
self._ceilometer_meter_list = ceilometer_meter_list
else:
try:
self._ceilometer_meter_list = meter_list(request)
except Exception:
self._ceilometer_meter_list = []
exceptions.handle(self._request,
_('Unable to retrieve Ceilometer meter'
'list.'))
# Storing the meters info categorized by their services.
self._nova_meters_info = self._get_nova_meters_info()
self._neutron_meters_info = self._get_neutron_meters_info()
self._glance_meters_info = self._get_glance_meters_info()
self._cinder_meters_info = self._get_cinder_meters_info()
self._swift_meters_info = self._get_swift_meters_info()
self._kwapi_meters_info = self._get_kwapi_meters_info()
# Storing the meters info of all services together.
all_services_meters = (self._nova_meters_info,
self._neutron_meters_info, self._glance_meters_info,
self._cinder_meters_info, self._swift_meters_info,
self._kwapi_meters_info)
self._all_meters_info = {}
for service_meters in all_services_meters:
self._all_meters_info.update(dict([(meter_name, meter_info)
for meter_name,
meter_info in service_meters.items()]))
# Here will be the cached Meter objects, that will be reused for
# repeated listing.
self._cached_meters = {}
def list_all(self, only_meters=None, except_meters=None):
"""Returns a list of meters based on the meters names
:Parameters:
- `only_meters`: The list of meter_names we want to show
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=only_meters,
except_meters=except_meters)
def list_nova(self, except_meters=None):
"""Returns a list of meters tied to nova
:Parameters:
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=self._nova_meters_info.keys(),
except_meters=except_meters)
def list_neutron(self, except_meters=None):
"""Returns a list of meters tied to neutron
:Parameters:
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=self._neutron_meters_info.keys(),
except_meters=except_meters)
def list_glance(self, except_meters=None):
"""Returns a list of meters tied to glance
:Parameters:
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=self._glance_meters_info.keys(),
except_meters=except_meters)
def list_cinder(self, except_meters=None):
"""Returns a list of meters tied to cinder
:Parameters:
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=self._cinder_meters_info.keys(),
except_meters=except_meters)
def list_swift(self, except_meters=None):
"""Returns a list of meters tied to swift
:Parameters:
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=self._swift_meters_info.keys(),
except_meters=except_meters)
def list_kwapi(self, except_meters=None):
"""Returns a list of meters tied to kwapi
:Parameters:
- `except_meters`: The list of meter names we don't want to show
"""
return self._list(only_meters=self._kwapi_meters_info.keys(),
except_meters=except_meters)
def _list(self, only_meters=None, except_meters=None):
"""Returns a list of meters based on the meters names
:Parameters:
- `only_meters`: The list of meter_names we want to show
- `except_meters`: The list of meter names we don't want to show
"""
# Get all wanted meter names.
if only_meters:
meter_names = only_meters
else:
meter_names = [meter_name for meter_name
in self._all_meters_info.keys()]
meter_names = diff_lists(meter_names, except_meters)
# Collect meters for wanted meter names.
return self._get_meters(meter_names)
def _get_meters(self, meter_names):
"""Obtain meters based on meter_names
The meters that do not exist in Ceilometer meter list are left out.
:Parameters:
- `meter_names`: A list of meter names we want to fetch.
"""
meters = []
for meter_name in meter_names:
meter = self._get_meter(meter_name)
if meter:
meters.append(meter)
return meters
def _get_meter(self, meter_name):
"""Obtains a meter
Obtains meter either from cache or from Ceilometer meter list
joined with statically defined meter info like label and description.
:Parameters:
- `meter_name`: A meter name we want to fetch.
"""
meter = self._cached_meters.get(meter_name, None)
if not meter:
meter_candidates = [m for m in self._ceilometer_meter_list
if m.name == meter_name]
if meter_candidates:
meter_info = self._all_meters_info.get(meter_name, None)
if meter_info:
label = meter_info["label"]
description = meter_info["description"]
else:
label = ""
description = ""
meter = meter_candidates[0]
meter.augment(label=label, description=description)
self._cached_meters[meter_name] = meter
return meter
def _get_nova_meters_info(self):
"""Returns additional info for each meter
That will be used for augmenting the Ceilometer meter.
"""
# TODO(lsmola) Unless the Ceilometer will provide the information
# below, I need to define it as a static here. I will be joining this
# to info that I am able to obtain from Ceilometer meters, hopefully
# some day it will be supported all.
meters_info = datastructures.SortedDict([
("instance", {
'label': '',
'description': _("Duration of instance"),
}),
("instance:<type>", {
'label': '',
'description': _("Duration of instance <type> "
"(openstack types)"),
}),
("memory", {
'label': '',
'description': _("Volume of RAM in MB"),
}),
("cpu", {
'label': '',
'description': _("CPU time used"),
}),
("cpu_util", {
'label': '',
'description': _("Average CPU utilization"),
}),
("vcpus", {
'label': '',
'description': _("Number of VCPUs"),
}),
("disk.read.requests", {
'label': '',
'description': _("Number of read requests"),
}),
("disk.write.requests", {
'label': '',
'description': _("Number of write requests"),
}),
("disk.read.bytes", {
'label': '',
'description': _("Volume of reads in B"),
}),
("disk.write.bytes", {
'label': '',
'description': _("Volume of writes in B"),
}),
("disk.root.size", {
'label': '',
'description': _("Size of root disk in GB"),
}),
("disk.ephemeral.size", {
'label': '',
'description': _("Size of ephemeral disk "
"in GB"),
}),
("network.incoming.bytes", {
'label': '',
'description': _("Number of incoming bytes "
"on the network for a VM interface"),
}),
("network.outgoing.bytes", {
'label': '',
'description': _("Number of outgoing bytes "
"on the network for a VM interface"),
}),
("network.incoming.packets", {
'label': '',
'description': _("Number of incoming "
"packets for a VM interface"),
}),
("network.outgoing.packets", {
'label': '',
'description': _("Number of outgoing "
"packets for a VM interface"),
})
])
# Adding flavor based meters into meters_info dict
# TODO(lsmola) this kind of meter will be probably deprecated
# https://bugs.launchpad.net/ceilometer/+bug/1208365 . Delete it then.
for flavor in get_flavor_names(self._request):
name = 'instance:%s' % flavor
meters_info[name] = dict(meters_info["instance:<type>"])
meters_info[name]['description'] = (
_('Duration of instance type %s (openstack flavor)') %
flavor)
# TODO(lsmola) allow to set specific in local_settings. For all meters
# because users can have their own agents and meters.
return meters_info
def _get_neutron_meters_info(self):
"""Returns additional info for each meter
That will be used for augmenting the Ceilometer meter
"""
# TODO(lsmola) Unless the Ceilometer will provide the information
# below, I need to define it as a static here. I will be joining this
# to info that I am able to obtain from Ceilometer meters, hopefully
# some day it will be supported all.
return datastructures.SortedDict([
('network', {
'label': '',
'description': _("Duration of network"),
}),
('network.create', {
'label': '',
'description': _("Creation requests for this network"),
}),
('network.update', {
'label': '',
'description': _("Update requests for this network"),
}),
('subnet', {
'label': '',
'description': _("Duration of subnet"),
}),
('subnet.create', {
'label': '',
'description': _("Creation requests for this subnet"),
}),
('subnet.update', {
'label': '',
'description': _("Update requests for this subnet"),
}),
('port', {
'label': '',
'description': _("Duration of port"),
}),
('port.create', {
'label': '',
'description': _("Creation requests for this port"),
}),
('port.update', {
'label': '',
'description': _("Update requests for this port"),
}),
('router', {
'label': '',
'description': _("Duration of router"),
}),
('router.create', {
'label': '',
'description': _("Creation requests for this router"),
}),
('router.update', {
'label': '',
'description': _("Update requests for this router"),
}),
('ip.floating', {
'label': '',
'description': _("Duration of floating ip"),
}),
('ip.floating.create', {
'label': '',
'description': _("Creation requests for this floating ip"),
}),
('ip.floating.update', {
'label': '',
'description': _("Update requests for this floating ip"),
}),
])
def _get_glance_meters_info(self):
"""Returns additional info for each meter
That will be used for augmenting the Ceilometer meter
"""
# TODO(lsmola) Unless the Ceilometer will provide the information
# below, I need to define it as a static here. I will be joining this
# to info that I am able to obtain from Ceilometer meters, hopefully
# some day it will be supported all.
return datastructures.SortedDict([
('image', {
'label': '',
'description': _("Image existence check"),
}),
('image.size', {
'label': '',
'description': _("Uploaded image size"),
}),
('image.update', {
'label': '',
'description': _("Number of update on the image"),
}),
('image.upload', {
'label': '',
'description': _("Number of upload of the image"),
}),
('image.delete', {
'label': '',
'description': _("Number of delete on the image"),
}),
('image.download', {
'label': '',
'description': _("Image is downloaded"),
}),
('image.serve', {
'label': '',
'description': _("Image is served out"),
}),
])
def _get_cinder_meters_info(self):
"""Returns additional info for each meter
That will be used for augmenting the Ceilometer meter
"""
# TODO(lsmola) Unless the Ceilometer will provide the information
# below, I need to define it as a static here. I will be joining this
# to info that I am able to obtain from Ceilometer meters, hopefully
# some day it will be supported all.
return datastructures.SortedDict([
('volume', {
'label': '',
'description': _("Duration of volume"),
}),
('volume.size', {
'label': '',
'description': _("Size of volume"),
}),
])
def _get_swift_meters_info(self):
"""Returns additional info for each meter
That will be used for augmenting the Ceilometer meter
"""
# TODO(lsmola) Unless the Ceilometer will provide the information
# below, I need to define it as a static here. I will be joining this
# to info that I am able to obtain from Ceilometer meters, hopefully
# some day it will be supported all.
return datastructures.SortedDict([
('storage.objects', {
'label': '',
'description': _("Number of objects"),
}),
('storage.objects.size', {
'label': '',
'description': _("Total size of stored objects"),
}),
('storage.objects.containers', {
'label': '',
'description': _("Number of containers"),
}),
('storage.objects.incoming.bytes', {
'label': '',
'description': _("Number of incoming bytes"),
}),
('storage.objects.outgoing.bytes', {
'label': '',
'description': _("Number of outgoing bytes"),
}),
('storage.api.request', {
'label': '',
'description': _("Number of API requests against swift"),
}),
])
def _get_kwapi_meters_info(self):
"""Returns additional info for each meter
That will be used for augmenting the Ceilometer meter
"""
# TODO(lsmola) Unless the Ceilometer will provide the information
# below, I need to define it as a static here. I will be joining this
# to info that I am able to obtain from Ceilometer meters, hopefully
# some day it will be supported all.
return datastructures.SortedDict([
('energy', {
'label': '',
'description': _("Amount of energy"),
}),
('power', {
'label': '',
'description': _("Power consumption"),
}),
])