.. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ================== Upgrading Keystone ================== As of the Newton release, keystone supports two different approaches to upgrading across releases. The traditional approach requires a significant outage to be scheduled for the entire duration of the upgrade process. The more modern approach results in zero downtime, but is more complicated due to a longer upgrade procedure. .. NOTE:: The details of these steps are entirely dependent on the details of your specific deployment, such as your chosen application server and database management system. Use it only as a guide when implementing your own upgrade process. Before you begin ---------------- Plan your upgrade: * Read and ensure you understand the `release notes http://docs.openstack.org/releasenotes/keystone/`_ for the next release. * Resolve any outstanding deprecation warnings in your logs. Some deprecation cycles are as short as a single release, so it's possible to break a deployment if you leave *any* outstanding warnings. It might be a good idea to re-read the release notes for the previous release (or two!). * Prepare your new configuration files, including ``keystone.conf``, ``logging.conf``, ``policy.json``, ``keystone-paste.ini``, and anything else in ``/etc/keystone/``, by customizing the corresponding files from the next release. Upgrading with downtime ----------------------- This is a high-level description of our upgrade strategy built around ``keystone-manage db_sync``. It assumes that you are willing to have downtime of your control plane during the upgrade process and presents minimal risk. With keystone unavailable, no other OpenStack services will be able to authenticate requests, effectively preventing the rest of the control plane from functioning normally. #. Stop all keystone processes. Otherwise, you'll risk multiple releases of keystone trying to write to the database at the same time, which may result in data being inconsistently written and read. #. Make a backup of your database. Keystone does not support downgrading the database, so restoring from a full backup is your only option for recovery in the event of an upgrade failure. #. Upgrade all keystone nodes to the next release. #. Update your configuration files (``/etc/keystone/``) with those corresponding from the latest release. #. Run ``keystone-manage db_sync`` from any single node to upgrade both the database schema and run any corresponding database migrations. #. (*New in Newton*) Run ``keystone-manage doctor`` to diagnose symptoms of common deployment issues and receive instructions for resolving them. #. Start all keystone processes. Upgrading without downtime -------------------------- This is a high-level description of our upgrade strategy built around additional options in ``keystone-manage db_sync``. Although it is much more complex than the upgrade process described above, it assumes that you are not willing to have downtime of your control plane during the upgrade process. With this upgrade process, end users will still be able to authenticate to receive tokens normally, and other OpenStack services will still be able to authenticate requests normally. #. Make a backup of your database. Keystone does not support downgrading the database, so restoring from a full backup is your only option for recovery in the event of an upgrade failure. #. Stop the keystone processes on the first node (or really, any arbitrary node). This node will serve to orchestrate database upgrades. #. Upgrade your first node to the next release, but do not start any keystone processes. #. Update your configuration files on the first node (``/etc/keystone/``) with those corresponding to the latest release. #. (*New in Newton*) Run ``keystone-manage doctor`` on the first node to diagnose symptoms of common deployment issues and receive instructions for resolving them. #. Run ``keystone-manage db_sync --expand`` on the first node to expand the database schema to a superset of what both the previous and next release can utilize, and create triggers to facilitate the live migration process. At this point, new columns and tables may exist in the database, but will *not* all be populated in such a way that the next release will be able to function normally. As the previous release continues to write to the old schema, database triggers will live migrate the data to the new schema so it can be read by the next release. #. Run ``keystone-manage db_sync --migrate`` on the first node to forcefully perform data migrations. This process will migrate all data from the old schema to the new schema while the previous release continues to operate normally. When this process completes, all data will be available in both the new schema and the old schema, so both the previous release and the next release will be capable are operating normally. #. Update your configuration files (``/etc/keystone/``) on all nodes (except the first node, which you've already done) with those corresponding to the latest release. #. Upgrade all keystone nodes to the next release, and restart them one at a time. During this step, you'll have a mix of releases operating side by side, both writing to the database. As the next release begins writing to the new schema, database triggers will also migrate the data to the old schema, keeping both data schemas in sync. #. Run ``keystone-manage db_sync --contract`` to remove the old schema and all data migration triggers. When this process completes, the database will no longer be able to support the previous release.