/* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * BSD linked list implementation - extracted for use with liberasurecode * */ #ifndef _LIST_H #define _LIST_H /* * A singly-linked list is headed by a single forward pointer. The elements * are singly linked for minimum space and pointer manipulation overhead at * the expense of O(n) removal for arbitrary elements. New elements can be * added to the list after an existing element or at the head of the list. * Elements being removed from the head of the list should use the explicit * macro for this purpose for optimum efficiency. A singly-linked list may * only be traversed in the forward direction. Singly-linked lists are ideal * for applications with large datasets and few or no removals or for * implementing a LIFO queue. */ /* * Singly-linked List declarations. */ #define SLIST_HEAD(name, type) \ struct name { \ struct type *slh_first; /* first element */ \ } #define SLIST_HEAD_INITIALIZER(head) \ { NULL } #define SLIST_ENTRY(type) \ struct { \ struct type *sle_next; /* next element */ \ } /* * Singly-linked List functions. */ #define SLIST_EMPTY(head) ((head)->slh_first == NULL) #define SLIST_FIRST(head) ((head)->slh_first) #define SLIST_FOREACH(var, head, field) \ for ((var) = SLIST_FIRST((head)); \ (var); \ (var) = SLIST_NEXT((var), field)) #define SLIST_INIT(head) do { \ SLIST_FIRST((head)) = NULL; \ } while (0) #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \ SLIST_NEXT((slistelm), field) = (elm); \ } while (0) #define SLIST_INSERT_HEAD(head, elm, field) do { \ SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \ SLIST_FIRST((head)) = (elm); \ } while (0) #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) #define SLIST_REMOVE(head, elm, type, field) do { \ if (SLIST_FIRST((head)) == (elm)) { \ SLIST_REMOVE_HEAD((head), field); \ } \ else { \ struct type *curelm = SLIST_FIRST((head)); \ while (SLIST_NEXT(curelm, field) != (elm)) \ curelm = SLIST_NEXT(curelm, field); \ SLIST_NEXT(curelm, field) = \ SLIST_NEXT(SLIST_NEXT(curelm, field), field); \ } \ } while (0) #define SLIST_REMOVE_HEAD(head, field) do { \ SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \ } while (0) #endif // _LIST_H