Files
liberasurecode/tests/test_xor_hd_code.c
2014-06-11 16:07:04 -07:00

416 lines
12 KiB
C

/* * Copyright (c) 2013, Kevin Greenan (kmgreen2@gmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY
* THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <xor_code.h>
#include <test_xor_hd_code.h>
void fill_buffer(unsigned char *buf, int size, int seed)
{
int i;
buf[0] = seed;
for (i=1; i < size; i++) {
buf[i] = ((buf[i-1] + i) % 256);
}
}
int check_buffer(unsigned char *buf, int size, int seed)
{
int i;
if (buf[0] != seed) {
fprintf(stderr, "Seed does not match index 0: %u\n", buf[0]);
return -1;
}
for (i=1; i < size; i++) {
if (buf[i] != ((buf[i-1] + i) % 256)) {
fprintf(stderr, "Buffer does not match index %d: %u\n", i, (buf[i] & 0xff));
return -1;
}
}
return 0;
}
int test_hd_code(xor_code_t *code_desc, int num_failure_combs, int failure_combs[][4])
{
int i, j;
int num_iter = 1000;
int blocksize = 32768;
int missing_idxs[4] = { -1 };
int ret = 0;
char **data, **parity;
clock_t start_time, end_time;
int *fragments_needed;
srand(time(NULL));
data = (char**)malloc(code_desc->k * sizeof(char*));
parity = (char**)malloc(code_desc->m * sizeof(char*));
fragments_needed = (int*)malloc(code_desc->k*code_desc->m*sizeof(int));
if (!fragments_needed) {
fprintf(stderr, "Could not allocate memory for fragments %d\n", i);
exit(2);
}
bzero(fragments_needed, code_desc->k*code_desc->m*sizeof(int));
for (i=0; i < code_desc->k; i++) {
data[i] = aligned_malloc(blocksize, 16);
fill_buffer(data[i], blocksize, i);
if (!data[i]) {
fprintf(stderr, "Could not allocate memory for data %d\n", i);
exit(2);
}
}
for (i=0; i < code_desc->m; i++) {
parity[i] = aligned_malloc(blocksize, 16);
memset(parity[i], 0, blocksize);
if (!parity[i]) {
fprintf(stderr, "Could not allocate memory for parity %d\n", i);
exit(2);
}
}
start_time = clock();
for (i=0; i < num_iter-1; i++) {
code_desc->encode(code_desc, data, parity, blocksize);
}
end_time = clock();
fprintf(stderr, "Encode: %.2f MB/s\n", ((double)(num_iter * blocksize * code_desc->k) / 1000 / 1000 ) / ((double)(end_time-start_time) / CLOCKS_PER_SEC));
for (i=0; i < code_desc->m; i++) {
memset(parity[i], 0, blocksize);
}
code_desc->encode(code_desc, data, parity, blocksize);
for (i=0; i < num_failure_combs; i++) {
int missing_idx_0 = failure_combs[i][0];
int missing_idx_1 = failure_combs[i][1];
int missing_idx_2 = failure_combs[i][2];
missing_idxs[0] = missing_idx_0;
missing_idxs[1] = missing_idx_1;
missing_idxs[2] = missing_idx_2;
missing_idxs[3] = -1;
if (missing_idxs[0] > -1) {
if (missing_idxs[0] < code_desc->k) {
memset(data[missing_idxs[0]], 0, blocksize);
} else {
memset(parity[missing_idxs[0] - code_desc->k], 0, blocksize);
}
}
if (missing_idxs[1] > -1) {
if (missing_idxs[1] < code_desc->k) {
memset(data[missing_idxs[1]], 0, blocksize);
} else {
memset(parity[missing_idxs[1] - code_desc->k], 0, blocksize);
}
}
if (missing_idxs[2] > -1) {
if (missing_idxs[2] < code_desc->k) {
memset(data[missing_idxs[2]], 0, blocksize);
} else {
memset(parity[missing_idxs[2] - code_desc->k], 0, blocksize);
}
}
/*
* Spot check to ensure missing elements are not included in
* list of fragments needed and that decode is 'doable'
*/
ret = code_desc->fragments_needed(code_desc, missing_idxs, fragments_needed);
if (ret < 0) {
fprintf(stderr, "xor_hd_fragments_needed thinks reconstruction not possible, when it is!\n");
exit(2);
}
j = 0;
while (fragments_needed[j] > -1) {
if (fragments_needed[j] == missing_idxs[0] ||
fragments_needed[j] == missing_idxs[1] ||
fragments_needed[j] == missing_idxs[2]) {
fprintf(stderr, "fragments_needed[%d]=%d in missing index list: (%d %d %d)!\n", j, fragments_needed[j], missing_idxs[0], missing_idxs[1], missing_idxs[2]);
exit(2);
}
j++;
}
missing_idxs[0] = missing_idx_0;
missing_idxs[1] = missing_idx_1;
missing_idxs[2] = missing_idx_2;
missing_idxs[3] = -1;
code_desc->decode(code_desc, data, parity, missing_idxs, blocksize, 1);
if (missing_idxs[0] > -1 && missing_idxs[0] < code_desc->k && check_buffer(data[missing_idx_0], blocksize, missing_idx_0) < 0) {
fprintf(stderr, "Decode did not work: %d (%d %d %d)!\n", missing_idxs[0], missing_idxs[0], missing_idxs[1], missing_idxs[2]);
exit(2);
}
if (missing_idxs[1] > -1 && missing_idxs[1] < code_desc->k && check_buffer(data[missing_idx_1], blocksize, missing_idx_1) < 0) {
fprintf(stderr, "Decode did not work: %d (%d %d %d)!\n", missing_idxs[1], missing_idxs[0], missing_idxs[1], missing_idxs[2]);
exit(2);
}
if (missing_idxs[2] > -1 && missing_idxs[2] < code_desc->k && check_buffer(data[missing_idx_2], blocksize, missing_idx_2) < 0) {
fprintf(stderr, "Decode did not work: %d (%d %d %d)!\n", missing_idxs[2], missing_idxs[0], missing_idxs[1], missing_idxs[2]);
exit(2);
}
}
start_time = clock();
for (i=0; i < num_iter; i++) {
int j;
missing_idxs[0] = rand() % (code_desc->k + code_desc->m);
for (j=1; j < code_desc->hd-1;j++) {
missing_idxs[j] = (missing_idxs[j-1] + 1) % (code_desc->k + code_desc->m);
}
missing_idxs[code_desc->hd-1] = -1;
if (missing_idxs[0] > -1 && missing_idxs[0] < code_desc->k) {
memset(data[missing_idxs[0]], 0, blocksize);
}
if (missing_idxs[1] > -1 && missing_idxs[1] < code_desc->k) {
memset(data[missing_idxs[1]], 0, blocksize);
}
if (missing_idxs[2] > -1 && missing_idxs[2] < code_desc->k) {
memset(data[missing_idxs[2]], 0, blocksize);
}
code_desc->decode(code_desc, data, parity, missing_idxs, blocksize, 1);
}
end_time = clock();
fprintf(stderr, "Decode: %.2f MB/s\n", ((double)(num_iter * blocksize * code_desc->k) / 1000 / 1000 ) / ((double)(end_time-start_time) / CLOCKS_PER_SEC));
free(fragments_needed);
for (i = 0; i < code_desc->k; i++) {
aligned_free(data[i]);
}
free(data);
for (i = 0; i < code_desc->m; i++) {
aligned_free(parity[i]);
}
free(parity);
return 0;
}
int run_test(int k, int m, int hd)
{
int ret = -1;
xor_code_t * code_desc = init_xor_hd_code(k, m, hd);
fprintf(stderr, "Running (%d, %d, %d):\n", k, m, hd);
switch(k+m) {
case 10:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_10_3_COMBS, failure_combs_10_3);
} else {
ret = test_hd_code(code_desc, NUM_10_4_COMBS, failure_combs_10_4);
}
break;
case 11:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_11_3_COMBS, failure_combs_11_3);
} else {
ret = test_hd_code(code_desc, NUM_11_4_COMBS, failure_combs_11_4);
}
break;
case 12:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_12_3_COMBS, failure_combs_12_3);
} else {
ret = test_hd_code(code_desc, NUM_12_4_COMBS, failure_combs_12_4);
}
break;
case 13:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_13_3_COMBS, failure_combs_13_3);
} else {
ret = test_hd_code(code_desc, NUM_13_4_COMBS, failure_combs_13_4);
}
break;
case 14:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_14_3_COMBS, failure_combs_14_3);
} else {
ret = test_hd_code(code_desc, NUM_14_4_COMBS, failure_combs_14_4);
}
break;
case 15:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_15_3_COMBS, failure_combs_15_3);
} else {
ret = test_hd_code(code_desc, NUM_15_4_COMBS, failure_combs_15_4);
}
break;
case 16:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_16_3_COMBS, failure_combs_16_3);
} else {
ret = test_hd_code(code_desc, NUM_16_4_COMBS, failure_combs_16_4);
}
break;
case 17:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_17_3_COMBS, failure_combs_17_3);
} else {
ret = test_hd_code(code_desc, NUM_17_4_COMBS, failure_combs_17_4);
}
break;
case 18:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_18_3_COMBS, failure_combs_18_3);
} else {
ret = test_hd_code(code_desc, NUM_18_4_COMBS, failure_combs_18_4);
}
break;
case 19:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_19_3_COMBS, failure_combs_19_3);
} else {
ret = test_hd_code(code_desc, NUM_19_4_COMBS, failure_combs_19_4);
}
break;
case 20:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_20_3_COMBS, failure_combs_20_3);
} else {
ret = test_hd_code(code_desc, NUM_20_4_COMBS, failure_combs_20_4);
}
break;
case 21:
if (hd == 3) {
ret = test_hd_code(code_desc, NUM_21_3_COMBS, failure_combs_21_3);
} else {
ret = test_hd_code(code_desc, NUM_21_4_COMBS, failure_combs_21_4);
}
break;
case 22:
ret = test_hd_code(code_desc, NUM_22_4_COMBS, failure_combs_22_4);
break;
case 23:
ret = test_hd_code(code_desc, NUM_23_4_COMBS, failure_combs_23_4);
break;
case 24:
ret = test_hd_code(code_desc, NUM_24_4_COMBS, failure_combs_24_4);
break;
case 25:
ret = test_hd_code(code_desc, NUM_25_4_COMBS, failure_combs_25_4);
break;
case 26:
ret = test_hd_code(code_desc, NUM_26_4_COMBS, failure_combs_26_4);
break;
default:
ret = -1;
}
free(code_desc);
return ret;
}
/**
* Runs a series aligned_malloc/aligned_free calls with a set of size and
* alignment values. For each alignment value, perform a series of boundry
* value anaylsis alloctions for every power-of-two between 2 and 32768.
* Then perform an aligned_free for each allocation.
*
* @return 0 is test behaves as expected, else -1.
*
*/
int run_aligned_malloc_test() {
int align = 8;
size_t amount;
int modifier;
for (align = 8; align <= 128; align *= 2) {
size_t amount = 2;
for (amount = 2; amount <= 32768; amount *= 2) {
int modifier;
for (modifier = -1; modifier <= 1; modifier++) {
size_t actual_amount = amount + modifier;
void *tmem = aligned_malloc(actual_amount,align);
if (!tmem) {
return -1;
}
if (memset(tmem,0,actual_amount) != tmem) {
return -1;
}
aligned_free(tmem);
}
}
}
return 0;
}
int main()
{
int ret = 0;
int i;
ret = run_aligned_malloc_test();
if (ret != 0) {
return ret;
}
for (i=6; i < 16; i++) {
ret = run_test(i, 6, 3);
if (ret != 0) {
return ret;
}
}
for (i=5; i < 11; i++) {
ret = run_test(i, 5, 3);
if (ret != 0) {
return ret;
}
}
for (i=6; i < 21; i++) {
ret = run_test(i, 6, 4);
if (ret != 0) {
return ret;
}
}
for (i=5; i < 11; i++) {
ret = run_test(i, 5, 4);
if (ret != 0) {
return ret;
}
}
exit(0);
}