Hasan Acar 84f03c516a Fixing the gates
fix: sha256 instead of sha1 for metric_id

fix: allowlist added to .tox file
Change-Id: I0384f8e9cdae901df9403c442fce4cf1bf036968
2024-03-20 05:52:08 +00:00

285 lines
13 KiB
Python

# (C) Copyright 2016 Hewlett Packard Enterprise Development Company LP
# (C) Copyright 2017 SUSE LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from cachetools import LRUCache
from collections import namedtuple
import hashlib
import threading
from cassandra.concurrent import execute_concurrent
from oslo_log import log
import simplejson as json
from monasca_persister.repositories.cassandra import abstract_repository
from monasca_persister.repositories.cassandra import token_range_query_manager
from monasca_persister.repositories.cassandra.metric_batch import MetricBatch
from monasca_persister.repositories.utils import parse_measurement_message
LOG = log.getLogger(__name__)
MEASUREMENT_INSERT_CQL = (
'update monasca.measurements USING TTL ? '
'set value = ?, value_meta = ?, region = ?, tenant_id = ?, metric_name = ?, dimensions = ? '
'where metric_id = ? and time_stamp = ?')
MEASUREMENT_UPDATE_CQL = ('update monasca.measurements USING TTL ? '
'set value = ?, value_meta = ? where metric_id = ? and time_stamp = ?')
METRICS_INSERT_CQL = ('update monasca.metrics USING TTL ? '
'set metric_id = ?, created_at = ?, updated_at = ? '
'where region = ? and tenant_id = ? and metric_name = ? and dimensions = ? '
'and dimension_names = ?')
METRICS_UPDATE_CQL = ('update monasca.metrics USING TTL ? '
'set metric_id = ?, updated_at = ? '
'where region = ? and tenant_id = ? and metric_name = ? and dimensions = ? '
'and dimension_names = ?')
DIMENSION_INSERT_CQL = ('insert into monasca.dimensions '
'(region, tenant_id, name, value) values (?, ?, ?, ?)')
DIMENSION_METRIC_INSERT_CQL = ('insert into monasca.dimensions_metrics '
'(region, tenant_id, dimension_name, dimension_value, metric_name) '
'values (?, ?, ?, ?, ?)')
METRIC_DIMENSION_INSERT_CQL = ('insert into monasca.metrics_dimensions '
'(region, tenant_id, metric_name, dimension_name, dimension_value) '
'values (?, ?, ?, ?, ?)')
RETRIEVE_DIMENSION_CQL = 'select region, tenant_id, name, value from dimensions'
RETRIEVE_METRIC_DIMENSION_CQL = ('select region, tenant_id, metric_name, '
'dimension_name, dimension_value from metrics_dimensions '
'WHERE token(region, tenant_id, metric_name) > ? '
'and token(region, tenant_id, metric_name) <= ? ')
Metric = namedtuple('Metric',
['id',
'region',
'tenant_id',
'name',
'dimension_list',
'dimension_names',
'time_stamp',
'value',
'value_meta'])
class MetricCassandraRepository(abstract_repository.AbstractCassandraRepository):
def __init__(self):
super(MetricCassandraRepository, self).__init__()
self._lock = threading.RLock()
LOG.debug("prepare cql statements...")
self._measurement_insert_stmt = self._session.prepare(MEASUREMENT_INSERT_CQL)
self._measurement_insert_stmt.is_idempotent = True
self._measurement_update_stmt = self._session.prepare(MEASUREMENT_UPDATE_CQL)
self._measurement_update_stmt.is_idempotent = True
self._metric_insert_stmt = self._session.prepare(METRICS_INSERT_CQL)
self._metric_insert_stmt.is_idempotent = True
self._metric_update_stmt = self._session.prepare(METRICS_UPDATE_CQL)
self._metric_update_stmt.is_idempotent = True
self._dimension_stmt = self._session.prepare(DIMENSION_INSERT_CQL)
self._dimension_stmt.is_idempotent = True
self._dimension_metric_stmt = self._session.prepare(DIMENSION_METRIC_INSERT_CQL)
self._dimension_metric_stmt.is_idempotent = True
self._metric_dimension_stmt = self._session.prepare(METRIC_DIMENSION_INSERT_CQL)
self._metric_dimension_stmt.is_idempotent = True
self._retrieve_metric_dimension_stmt = self._session.prepare(RETRIEVE_METRIC_DIMENSION_CQL)
self._metric_batch = MetricBatch(
self._cluster.metadata,
self._cluster.load_balancing_policy,
self._max_batches)
self._metric_id_cache = LRUCache(self._cache_size)
self._dimension_cache = LRUCache(self._cache_size)
self._metric_dimension_cache = LRUCache(self._cache_size)
self._load_dimension_cache()
self._load_metric_dimension_cache()
def process_message(self, message):
(dimensions, metric_name, region, tenant_id, time_stamp, value,
value_meta) = parse_measurement_message(message)
with self._lock:
dim_names = []
dim_list = []
for name in sorted(dimensions.iterkeys()):
dim_list.append('%s\t%s' % (name, dimensions[name]))
dim_names.append(name)
hash_string = '%s\0%s\0%s\0%s' % (region, tenant_id, metric_name, '\0'.join(dim_list))
metric_id = hashlib.sha256(hash_string.encode('utf8')).hexdigest()
# TODO(brtknr): If database per tenant becomes the default and the
# only option, recording tenant_id will be redundant.
metric = Metric(id=metric_id,
region=region,
tenant_id=tenant_id,
name=metric_name,
dimension_list=dim_list,
dimension_names=dim_names,
time_stamp=time_stamp,
value=value,
value_meta=json.dumps(value_meta, ensure_ascii=False))
id_bytes = bytearray.fromhex(metric.id)
if self._metric_id_cache.get(metric.id, None):
measurement_bound_stmt = self._measurement_update_stmt.bind((self._retention,
metric.value,
metric.value_meta,
id_bytes,
metric.time_stamp))
self._metric_batch.add_measurement_query(measurement_bound_stmt)
metric_update_bound_stmt = self._metric_update_stmt.bind((self._retention,
id_bytes,
metric.time_stamp,
metric.region,
metric.tenant_id,
metric.name,
metric.dimension_list,
metric.dimension_names))
self._metric_batch.add_metric_query(metric_update_bound_stmt)
return metric, tenant_id
self._metric_id_cache[metric.id] = metric.id
metric_insert_bound_stmt = self._metric_insert_stmt.bind((self._retention,
id_bytes,
metric.time_stamp,
metric.time_stamp,
metric.region,
metric.tenant_id,
metric.name,
metric.dimension_list,
metric.dimension_names))
self._metric_batch.add_metric_query(metric_insert_bound_stmt)
for dim in metric.dimension_list:
(name, value) = dim.split('\t')
dim_key = self._get_dimnesion_key(metric.region, metric.tenant_id, name, value)
if not self._dimension_cache.get(dim_key, None):
dimension_bound_stmt = self._dimension_stmt.bind((metric.region,
metric.tenant_id,
name,
value))
self._metric_batch.add_dimension_query(dimension_bound_stmt)
self._dimension_cache[dim_key] = dim_key
metric_dim_key = self._get_metric_dimnesion_key(
metric.region, metric.tenant_id, metric.name, name, value)
if not self._metric_dimension_cache.get(metric_dim_key, None):
dimension_metric_bound_stmt = self._dimension_metric_stmt.bind(
(metric.region, metric.tenant_id, name, value, metric.name))
self._metric_batch.add_dimension_metric_query(dimension_metric_bound_stmt)
metric_dimension_bound_stmt = self._metric_dimension_stmt.bind(
(metric.region, metric.tenant_id, metric.name, name, value))
self._metric_batch.add_metric_dimension_query(metric_dimension_bound_stmt)
self._metric_dimension_cache[metric_dim_key] = metric_dim_key
measurement_insert_bound_stmt = self._measurement_insert_stmt.bind(
(self._retention,
metric.value,
metric.value_meta,
metric.region,
metric.tenant_id,
metric.name,
metric.dimension_list,
id_bytes,
metric.time_stamp))
self._metric_batch.add_measurement_query(measurement_insert_bound_stmt)
return metric, tenant_id
def write_batch(self, metrics):
with self._lock:
batch_list = self._metric_batch.get_all_batches()
results = execute_concurrent(self._session, batch_list, raise_on_first_error=True)
self._handle_results(results)
self._metric_batch.clear()
LOG.info("flushed %s metrics", len(metrics))
@staticmethod
def _handle_results(results):
for (success, result) in results:
if not success:
raise result
def _load_dimension_cache(self):
rows = self._session.execute(RETRIEVE_DIMENSION_CQL)
if not rows:
return
for row in rows:
key = self._get_dimnesion_key(row.region, row.tenant_id, row.name, row.value)
self._dimension_cache[key] = key
LOG.info(
"loaded %s dimension entries cache from database into cache." %
self._dimension_cache.currsize)
@staticmethod
def _get_dimnesion_key(region, tenant_id, name, value):
return '%s\0%s\0%s\0%s' % (region, tenant_id, name, value)
def _load_metric_dimension_cache(self):
qm = token_range_query_manager.TokenRangeQueryManager(RETRIEVE_METRIC_DIMENSION_CQL,
self._process_metric_dimension_query)
token_ring = self._cluster.metadata.token_map.ring
qm.query(token_ring)
def _process_metric_dimension_query(self, rows):
cnt = 0
for row in rows:
key = self._get_metric_dimnesion_key(
row.region,
row.tenant_id,
row.metric_name,
row.dimension_name,
row.dimension_value)
self._metric_dimension_cache[key] = key
cnt += 1
LOG.info("loaded %s metric dimension entries from database into cache." % cnt)
LOG.info(
"total loaded %s metric dimension entries in cache." %
self._metric_dimension_cache.currsize)
@staticmethod
def _get_metric_dimnesion_key(region, tenant_id, metric_name, dimension_name, dimension_value):
return '%s\0%s\0%s\0%s\0%s' % (region, tenant_id, metric_name,
dimension_name, dimension_value)