Roland Hochmuth 960529b171 Conversion to milliseconds
Change-Id: I9044899c212ff2ca93090e6d7b552456f616cfcf
2015-03-02 18:18:19 -07:00

536 lines
18 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2014 Hewlett-Packard Development Company, L.P.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Persister Module
The Persister reads metrics and alarms from Kafka and then stores them
in InfluxDB.
Start the perister as stand-alone process by running 'persister.py
--config-file <config file>'
Also able to use Openstack service to start the persister.
"""
import abc
from datetime import datetime
import json
import os
import six
import sys
import threading
import urllib
from influxdb import InfluxDBClient
from kafka import KafkaClient
from kafka import SimpleConsumer
from kazoo.client import KazooClient
from kazoo.recipe.partitioner import SetPartitioner
from oslo.config import cfg
from openstack.common import log
from openstack.common import service as os_service
import service
LOG = log.getLogger(__name__)
zookeeper_opts = [cfg.StrOpt('uri'),
cfg.IntOpt('partition_interval_recheck_seconds')]
zookeeper_group = cfg.OptGroup(name='zookeeper', title='zookeeper')
cfg.CONF.register_group(zookeeper_group)
cfg.CONF.register_opts(zookeeper_opts, zookeeper_group)
kafka_common_opts = [cfg.StrOpt('uri'),
cfg.StrOpt('group_id'),
cfg.StrOpt('topic'),
cfg.StrOpt('consumer_id'),
cfg.StrOpt('client_id'),
cfg.IntOpt('database_batch_size'),
cfg.IntOpt('max_wait_time_seconds'),
cfg.IntOpt('fetch_size_bytes'),
cfg.IntOpt('buffer_size'),
cfg.IntOpt('max_buffer_size'),
cfg.StrOpt('zookeeper_path')]
kafka_metrics_opts = kafka_common_opts
kafka_alarm_history_opts = kafka_common_opts
kafka_metrics_group = cfg.OptGroup(name='kafka_metrics', title='kafka_metrics')
kafka_alarm_history_group = cfg.OptGroup(name='kafka_alarm_history',
title='kafka_alarm_history')
cfg.CONF.register_group(kafka_metrics_group)
cfg.CONF.register_group(kafka_alarm_history_group)
cfg.CONF.register_opts(kafka_metrics_opts, kafka_metrics_group)
cfg.CONF.register_opts(kafka_alarm_history_opts, kafka_alarm_history_group)
influxdb_opts = [cfg.StrOpt('database_name'),
cfg.StrOpt('ip_address'),
cfg.StrOpt('port'),
cfg.StrOpt('user'),
cfg.StrOpt('password')]
influxdb_group = cfg.OptGroup(name='influxdb', title='influxdb')
cfg.CONF.register_group(influxdb_group)
cfg.CONF.register_opts(influxdb_opts, influxdb_group)
def main():
"""Start persister.
Start metric persister and alarm persister in separate threads.
"""
cfg.CONF(args=[], project='monasca', prog='persister')
log_levels = (cfg.CONF.default_log_levels)
cfg.set_defaults(log.log_opts, default_log_levels=log_levels)
log.setup("monasca-persister")
metric_persister = MetricPersister(cfg.CONF.kafka_metrics,
cfg.CONF.influxdb,
cfg.CONF.zookeeper)
alarm_persister = AlarmPersister(cfg.CONF.kafka_alarm_history,
cfg.CONF.influxdb,
cfg.CONF.zookeeper)
metric_persister.start()
alarm_persister.start()
LOG.info('''
_____
/ \ ____ ____ _____ ______ ____ _____
/ \ / \ / _ \ / \\\__ \ / ___// ___\\\__ \\
/ Y ( <_> ) | \/ __ \_\___ \\ \___ / __ \\_
\____|__ /\____/|___| (____ /____ >\___ >____ /
\/ \/ \/ \/ \/ \/
__________ .__ __
\______ \ ___________ _____|__| _______/ |_ ___________
| ___// __ \_ __ \/ ___/ |/ ___/\ __\/ __ \_ __ \\
| | \ ___/| | \/\___ \| |\___ \ | | \ ___/| | \/
|____| \___ >__| /____ >__/____ > |__| \___ >__|
\/ \/ \/ \/
''')
LOG.info('Monasca Persister has started successfully!')
def shutdown_all_threads_and_die():
"""Shut down all threads and exit process.
Hit it with a hammer to kill all threads and die. May cause duplicate
messages in kafka queue to be reprocessed when the persister starts again.
Happens if the persister dies just after sending metrics and alarms to the
DB but does not reach the commit.
"""
os._exit(1)
class Persister(os_service.Service):
"""Class used with Openstack service.
"""
def __init__(self, threads=1):
super(Persister, self).__init__(threads)
def start(self):
try:
main()
except:
LOG.exception('Persister encountered fatal error. '
'Shutting down all threads and exiting.')
shutdown_all_threads_and_die()
@six.add_metaclass(abc.ABCMeta)
class AbstractPersister(threading.Thread):
def __init__(self, kafka_conf, influxdb_conf, zookeeper_conf):
super(AbstractPersister, self).__init__()
self._kafka_client = KafkaClient(kafka_conf.uri)
self._consumer = (
SimpleConsumer(self._kafka_client,
kafka_conf.group_id,
kafka_conf.topic,
# Set to true even though we actually do
# the commits manually. Needed to
# initialize
# offsets correctly.
auto_commit=True,
# Make these values None so that the
# manual commit will do the actual
# commit.
# Needed so that offsets are initialized
# correctly. If not done, then restarts
# will reread messages from beginning of
# the queue.
auto_commit_every_n=None,
auto_commit_every_t=None,
fetch_size_bytes=kafka_conf.fetch_size_bytes,
buffer_size=kafka_conf.buffer_size,
max_buffer_size=kafka_conf.max_buffer_size,
iter_timeout=1))
self._kafka_topic = kafka_conf.topic
self._influxdb_client = InfluxDBClient(influxdb_conf.ip_address,
influxdb_conf.port,
influxdb_conf.user,
influxdb_conf.password,
influxdb_conf.database_name)
self._kazoo_client = KazooClient(hosts=zookeeper_conf.uri)
self._kazoo_client.start()
self._zookeeper_path = kafka_conf.zookeeper_path
self._partition_interval_recheck_secs = (
zookeeper_conf.partition_interval_recheck_seconds)
self._max_wait_time_secs = kafka_conf.max_wait_time_seconds
self._database_batch_size = kafka_conf.database_batch_size
self._kafka_topic = kafka_conf.topic
self._message_count = 0
self._data_points = {}
self._last_flush = datetime.now()
self._last_partition_check = datetime.now()
@abc.abstractmethod
def process_message(self, message):
pass
def _flush(self, partitions):
if self._data_points:
try:
self._influxdb_client.write_points(self._data_points.values(), 'ms')
except Exception:
log.exception("Error writing to influxdb: {}"
.format(self._data_points.values()))
raise
self._consumer.commit(partitions=partitions)
LOG.info("Processed {} messages from topic '{}'".format(
self._message_count, self._kafka_topic))
self._data_points = {}
self._message_count = 0
self._last_flush = datetime.now()
def _is_time_for_repartition_check(self):
delta_partition_check_time = datetime.now() - self._last_partition_check
return delta_partition_check_time.seconds >= (
self._partition_interval_recheck_secs)
def _process_messages(self, partitions):
while 1:
if self._is_time_for_repartition_check():
return
delta_flush_time = datetime.now() - self._last_flush
if delta_flush_time.seconds >= self._max_wait_time_secs:
self._flush(partitions)
for message in self._consumer:
try:
data_point = self.process_message(message)
key = data_point['name']
if key in self._data_points:
points = data_point['points']
self._data_points[key]['points'].extend(points)
else:
self._data_points[key] = data_point
self._message_count += 1
if self._is_time_for_repartition_check():
return
except Exception:
LOG.exception('Error processing message. Message is '
'being dropped. {}'.format(message))
if self._message_count >= self._database_batch_size:
self._flush(partitions)
def _get_set_partitioner(self):
"""Partition the set of Kafka topic partitions.
Acquire a lock on a subset of the Kafka partitions for a topic
to allow other instances of the persister to run without reading
from the same Kafka partitions for the given topic.
"""
# Refresh the Kafka partitions and their offsets from Kafka to get
# a list of all available partitions. The set of available partitions
# configured in Kafka should not change.
self._consumer.fetch_last_known_offsets()
# Partition on the partitions.
set_partitioner = (
SetPartitioner(self._kazoo_client,
path=self._zookeeper_path,
set=self._consumer.fetch_offsets.keys(),
identifier=str(datetime.now())))
return set_partitioner
def run(self):
try:
set_partitioner = self._get_set_partitioner()
partitions = []
while 1:
if set_partitioner.failed:
raise Exception("Failed to acquire partition")
elif set_partitioner.release:
self._flush(partitions)
LOG.info("Releasing locks on partition set {} "
"for topic {}".format(partitions,
self._kafka_topic))
set_partitioner.release_set()
partitions = []
elif set_partitioner.acquired:
if not partitions:
partitions = [p for p in set_partitioner]
LOG.info("Acquired locks on partition set {} "
"for topic {}".format(
partitions, self._kafka_topic))
# Refresh the last known offsets again to make sure
# that they are the latest after having acquired the
# lock. Updates self._consumer.fetch_offsets.
self._consumer.fetch_last_known_offsets()
# Modify self._consumer.fetch_offsets to hold only the
# offsets for the set of Kafka partitions acquired
# by this instance of the persister.
partitioned_fetch_offsets = {}
for p in partitions:
partitioned_fetch_offsets[p] = (
self._consumer.fetch_offsets[p])
self._consumer.fetch_offsets = partitioned_fetch_offsets
self._last_partition_check = datetime.now()
self._process_messages(partitions)
elif set_partitioner.allocating:
LOG.info("Waiting to acquire locks on partition set")
set_partitioner.wait_for_acquire()
except:
LOG.exception(
'Persister encountered fatal exception processing messages. '
'Shutting down all threads and exiting')
shutdown_all_threads_and_die()
class AlarmPersister(AbstractPersister):
"""Class for persisting alarms.
"""
def __init__(self, kafka_conf, influxdb_conf, zookeeper_conf):
super(AlarmPersister, self).__init__(kafka_conf,
influxdb_conf,
zookeeper_conf)
def process_message(self, message):
LOG.debug(message.message.value.decode('utf8'))
decoded = json.loads(message.message.value)
LOG.debug(json.dumps(decoded, sort_keys=True, indent=4))
alarm_transitioned = decoded['alarm-transitioned']
actions_enabled = alarm_transitioned['actionsEnabled']
LOG.debug('actions enabled: %s', actions_enabled)
alarm_description = alarm_transitioned['alarmDescription']
LOG.debug('alarm description: %s', alarm_description)
alarm_id = alarm_transitioned['alarmId']
LOG.debug('alarm id: %s', alarm_id)
alarm_definition_id = alarm_transitioned[
'alarmDefinitionId']
LOG.debug('alarm definition id: %s', alarm_definition_id)
metrics = alarm_transitioned['metrics']
LOG.debug('metrics: %s', metrics)
alarm_name = alarm_transitioned['alarmName']
LOG.debug('alarm name: %s', alarm_name)
new_state = alarm_transitioned['newState']
LOG.debug('new state: %s', new_state)
old_state = alarm_transitioned['oldState']
LOG.debug('old state: %s', old_state)
state_change_reason = alarm_transitioned[
'stateChangeReason']
LOG.debug('state change reason: %s', state_change_reason)
tenant_id = alarm_transitioned['tenantId']
LOG.debug('tenant id: %s', tenant_id)
time_stamp = alarm_transitioned['timestamp']
LOG.debug('time stamp: %s', time_stamp)
data = {"points": [[time_stamp,
'{}',
tenant_id.encode('utf8'),
alarm_id.encode('utf8'),
alarm_definition_id.encode('utf8'),
json.dumps(metrics, ensure_ascii=False).encode(
'utf8'),
old_state.encode('utf8'),
new_state.encode('utf8'),
state_change_reason.encode('utf8')]],
"name": 'alarm_state_history',
"columns": ["time",
"reason_data",
"tenant_id",
"alarm_id",
"alarm_definition_id",
"metrics",
"old_state",
"new_state",
"reason"]}
LOG.debug(data)
return data
class MetricPersister(AbstractPersister):
"""Class for persisting metrics.
"""
def __init__(self, kafka_conf, influxdb_conf, zookeeper_conf):
super(MetricPersister, self).__init__(kafka_conf,
influxdb_conf,
zookeeper_conf)
def process_message(self, message):
LOG.debug(message.message.value.decode('utf8'))
decoded = json.loads(message.message.value)
LOG.debug(json.dumps(decoded, sort_keys=True, indent=4))
metric = decoded['metric']
metric_name = metric['name']
LOG.debug('name: %s', metric_name)
creation_time = decoded['creation_time']
LOG.debug('creation time: %s', creation_time)
region = decoded['meta']['region']
LOG.debug('region: %s', region)
tenant_id = decoded['meta']['tenantId']
LOG.debug('tenant id: %s', tenant_id)
dimensions = {}
if 'dimensions' in metric:
for dimension_name in metric['dimensions']:
dimensions[dimension_name] = (
metric['dimensions'][dimension_name])
LOG.debug('dimension: %s : %s', dimension_name,
dimensions[dimension_name])
time_stamp = metric['timestamp']
LOG.debug('timestamp %s', time_stamp)
value = metric['value']
LOG.debug('value: %s', value)
url_encoded_serie_name = (
urllib.quote(tenant_id.encode('utf8'), safe='') +
'?' +
urllib.quote(region.encode('utf8'), safe='') +
'&' +
urllib.quote(metric_name.encode('utf8'), safe=''))
for dimension_name in dimensions:
url_encoded_serie_name += (
'&' + urllib.quote(dimension_name.encode('utf8'),
safe='') + '=' + urllib.quote(
dimensions[dimension_name].encode('utf8'), safe=''))
LOG.debug("url_encoded_serie_name: %s", url_encoded_serie_name)
data = {"points": [[value,
time_stamp]],
"name": url_encoded_serie_name,
"columns": ["value",
"time"]}
LOG.debug(data)
return data
def main_service():
"""Method to use with Openstack service.
"""
service.prepare_service()
launcher = os_service.ServiceLauncher()
launcher.launch_service(Persister())
launcher.wait()
# Used if run without Openstack service.
if __name__ == "__main__":
sys.exit(main())