neutron/neutron/plugins/ml2
Slawek Kaplonski 3ac63422ea Improve log message when port losts its vlan tag
In some cases it may be useful to log new vlan tag which is found
on the port when it losts old vlan tag which should is expected to
be there.
So this patch adds such value to the log message.

TrivialFix

Change-Id: I231e624f460510decc6d2237040c8bef207e2e8e
2020-06-30 10:20:28 +02:00
..
common Utilize bulk port creation ops in ml2 plugin 2019-03-21 11:31:36 +00:00
drivers Improve log message when port losts its vlan tag 2020-06-30 10:20:28 +02:00
extensions Implement tagging during bulk port creation 2020-01-28 18:23:37 -06:00
README Metaplugin removal 2015-07-23 19:05:05 +09:00
__init__.py Empty files should not contain copyright or license 2014-10-20 00:50:32 +00:00
db.py Delete segment RPs when network is deleted 2020-05-25 09:10:41 +00:00
driver_context.py Drive binding by placement allocation 2019-03-09 22:03:51 +00:00
managers.py Add "project_id" filter when changing the network segmentation ID 2020-02-17 16:03:17 +00:00
models.py Pluralize binding relationship in Port 2018-07-13 19:37:36 -05:00
ovo_rpc.py use context manager from neutron-lib 2018-10-24 07:18:46 -06:00
plugin.py Remove unneeded DB register retrieval and refresh in network update 2020-05-12 18:32:11 +00:00
rpc.py ovs agent: signal to plugin if tunnel refresh needed 2020-01-09 14:18:43 +00:00

README

The Modular Layer 2 (ML2) plugin is a framework allowing OpenStack
Networking to simultaneously utilize the variety of layer 2 networking
technologies found in complex real-world data centers. It supports the
Open vSwitch, Linux bridge, and Hyper-V L2 agents, replacing and
deprecating the monolithic plugins previously associated with those
agents, and can also support hardware devices and SDN controllers. The
ML2 framework is intended to greatly simplify adding support for new
L2 networking technologies, requiring much less initial and ongoing
effort than would be required for an additional monolithic core
plugin. It is also intended to foster innovation through its
organization as optional driver modules.

The ML2 plugin supports all the non-vendor-specific neutron API
extensions, and works with the standard neutron DHCP agent. It
utilizes the service plugin interface to implement the L3 router
abstraction, allowing use of either the standard neutron L3 agent or
alternative L3 solutions. Additional service plugins can also be used
with the ML2 core plugin.

Drivers within ML2 implement separately extensible sets of network
types and of mechanisms for accessing networks of those
types. Multiple mechanisms can be used simultaneously to access
different ports of the same virtual network. Mechanisms can utilize L2
agents via RPC and/or interact with external devices or
controllers. By utilizing the multiprovidernet extension, virtual
networks can be composed of multiple segments of the same or different
types. Type and mechanism drivers are loaded as python entrypoints
using the stevedore library.

Each available network type is managed by an ML2 type driver.  Type
drivers maintain any needed type-specific network state, and perform
provider network validation and tenant network allocation. As of the
havana release, drivers for the local, flat, vlan, gre, and vxlan
network types are included.

Each available networking mechanism is managed by an ML2 mechanism
driver. All registered mechanism drivers are called twice when
networks, subnets, and ports are created, updated, or deleted. They
are first called as part of the DB transaction, where they can
maintain any needed driver-specific state. Once the transaction has
been committed, they are called again, at which point they can
interact with external devices and controllers. Mechanism drivers are
also called as part of the port binding process, to determine whether
the associated mechanism can provide connectivity for the network, and
if so, the network segment and VIF driver to be used. The havana
release includes mechanism drivers for the Open vSwitch, Linux bridge,
and Hyper-V L2 agents, and for vendor switches/controllers/etc.
It also includes an L2 Population mechanism driver that
can help optimize tunneled virtual network traffic.

For additional information regarding the ML2 plugin and its collection
of type and mechanism drivers, see the OpenStack manuals and
http://wiki.openstack.org/wiki/Neutron/ML2.