neutron/neutron/db/api.py

355 lines
13 KiB
Python

# Copyright 2011 VMware, Inc.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import contextlib
import copy
import weakref
from neutron_lib.db import api
from neutron_lib.db import model_base
from neutron_lib import exceptions
from neutron_lib.objects import exceptions as obj_exc
from oslo_config import cfg
from oslo_db import exception as db_exc
from oslo_log import log as logging
from oslo_utils import excutils
from osprofiler import opts as profiler_opts
import osprofiler.sqlalchemy
from pecan import util as p_util
import six
import sqlalchemy
from sqlalchemy import event # noqa
from sqlalchemy import exc as sql_exc
from sqlalchemy import orm
from sqlalchemy.orm import exc
def set_hook(engine):
if (profiler_opts.is_trace_enabled() and
profiler_opts.is_db_trace_enabled()):
osprofiler.sqlalchemy.add_tracing(sqlalchemy, engine, 'neutron.db')
context_manager = api.get_context_manager()
# TODO(ihrachys) the hook assumes options defined by osprofiler, and the only
# public function that is provided by osprofiler that will register them is
# set_defaults, that's why we call it here even though we don't need to change
# defaults
profiler_opts.set_defaults(cfg.CONF)
context_manager.append_on_engine_create(set_hook)
MAX_RETRIES = 10
LOG = logging.getLogger(__name__)
def is_retriable(e):
if getattr(e, '_RETRY_EXCEEDED', False):
return False
if _is_nested_instance(e, (db_exc.DBDeadlock, exc.StaleDataError,
db_exc.DBConnectionError,
db_exc.DBDuplicateEntry, db_exc.RetryRequest,
obj_exc.NeutronDbObjectDuplicateEntry)):
return True
# looking savepoints mangled by deadlocks. see bug/1590298 for details.
return _is_nested_instance(e, db_exc.DBError) and '1305' in str(e)
def _tag_retriables_as_unretriable(f):
"""Puts a flag on retriable exceptions so is_retriable returns False.
This decorator can be used outside of a retry decorator to prevent
decorators higher up from retrying again.
"""
@six.wraps(f)
def wrapped(*args, **kwargs):
try:
return f(*args, **kwargs)
except Exception as e:
with excutils.save_and_reraise_exception():
if is_retriable(e):
setattr(e, '_RETRY_EXCEEDED', True)
return wrapped
def _copy_if_lds(item):
"""Deepcopy lists/dicts/sets, leave everything else alone."""
return copy.deepcopy(item) if isinstance(item, (list, dict, set)) else item
def retry_if_session_inactive(context_var_name='context'):
"""Retries only if the session in the context is inactive.
Calls a retry_db_errors wrapped version of the function if the context's
session passed in is inactive, otherwise it just calls the function
directly. This is useful to avoid retrying things inside of a transaction
which is ineffective for DB races/errors.
This should be used in all cases where retries are desired and the method
accepts a context.
"""
def decorator(f):
try:
# NOTE(kevinbenton): we use pecan's util function here because it
# deals with the horrors of finding args of already decorated
# functions
ctx_arg_index = p_util.getargspec(f).args.index(context_var_name)
except ValueError:
raise RuntimeError("Could not find position of var %s" %
context_var_name)
f_with_retry = api.retry_db_errors(f)
@six.wraps(f)
def wrapped(*args, **kwargs):
# only use retry wrapper if we aren't nested in an active
# transaction
if context_var_name in kwargs:
context = kwargs[context_var_name]
else:
context = args[ctx_arg_index]
method = f if context.session.is_active else f_with_retry
return method(*args, **kwargs)
return wrapped
return decorator
def _is_nested_instance(e, etypes):
"""Check if exception or its inner excepts are an instance of etypes."""
if isinstance(e, etypes):
return True
if isinstance(e, exceptions.MultipleExceptions):
return any(_is_nested_instance(i, etypes) for i in e.inner_exceptions)
if isinstance(e, db_exc.DBError):
return _is_nested_instance(e.inner_exception, etypes)
return False
@contextlib.contextmanager
def autonested_transaction(sess):
"""This is a convenience method to not bother with 'nested' parameter."""
if sess.is_active:
session_context = sess.begin(nested=True)
else:
session_context = sess.begin(subtransactions=True)
with session_context as tx:
yield tx
_REGISTERED_SQLA_EVENTS = []
def sqla_listen(*args):
"""Wrapper to track subscribers for test teardowns.
SQLAlchemy has no "unsubscribe all" option for its event listener
framework so we need to keep track of the subscribers by having
them call through here for test teardowns.
"""
event.listen(*args)
_REGISTERED_SQLA_EVENTS.append(args)
def sqla_remove(*args):
event.remove(*args)
_REGISTERED_SQLA_EVENTS.remove(args)
def sqla_remove_all():
for args in _REGISTERED_SQLA_EVENTS:
try:
event.remove(*args)
except sql_exc.InvalidRequestError:
# already removed
pass
del _REGISTERED_SQLA_EVENTS[:]
@event.listens_for(orm.session.Session, "after_flush")
def add_to_rel_load_list(session, flush_context=None):
# keep track of new items to load relationships on during commit
session.info.setdefault('_load_rels', weakref.WeakSet()).update(
session.new)
@event.listens_for(orm.session.Session, "before_commit")
def load_one_to_manys(session):
# TODO(kevinbenton): we should be able to remove this after we
# have eliminated all places where related objects are constructed
# using a key rather than a relationship.
# capture any new objects
if session.new:
session.flush()
if session.transaction.nested:
# wait until final commit
return
for new_object in session.info.pop('_load_rels', []):
if new_object not in session:
# don't load detached objects because that brings them back into
# session
continue
state = sqlalchemy.inspect(new_object)
# set up relationship loading so that we can call lazy
# loaders on the object even though the ".key" is not set up yet
# (normally happens by in after_flush_postexec, but we're trying
# to do this more succinctly). in this context this is only
# setting a simple flag on the object's state.
session.enable_relationship_loading(new_object)
# look for eager relationships and do normal load.
# For relationships where the related object is also
# in the session these lazy loads will pull from the
# identity map and not emit SELECT. Otherwise, we are still
# local in the transaction so a normal SELECT load will work fine.
for relationship_attr in state.mapper.relationships:
if relationship_attr.lazy not in ('joined', 'subquery'):
# we only want to automatically load relationships that would
# automatically load during a lookup operation
continue
if relationship_attr.key not in state.dict:
getattr(new_object, relationship_attr.key)
if relationship_attr.key not in state.dict:
msg = ("Relationship %s attributes must be loaded in db"
" object %s" % (relationship_attr.key, state.dict))
raise AssertionError(msg)
# Expire relationships when foreign key changes.
#
# NOTE(ihrachys) Arguably, it's a sqlalchemy anti-pattern to access child
# models directly and through parent relationships in the same session. But
# since OVO mechanism is built around synthetic fields that assume this mixed
# access is possible, we keep it here until we find a way to migrate OVO
# synthetic fields to better mechanism that would update child models via
# parents. Even with that, there are multiple places in plugin code where we
# mix access when using models directly; those occurrences would need to be
# fixed too to be able to remove this hook and explicit expire() calls.
#
# Adopted from the following recipe:
# https://bitbucket.org/zzzeek/sqlalchemy/wiki/UsageRecipes
# /ExpireRelationshipOnFKChange
#
# ...then massively changed to actually work for all neutron backref cases.
#
# TODO(ihrachys) at some point these event handlers should be extended to also
# automatically refresh values for expired attributes
def expire_for_fk_change(target, fk_value, relationship_prop, column_attr):
"""Expire relationship attributes when a many-to-one column changes."""
sess = orm.object_session(target)
# subnets and network's many-to-one relationship is used as example in the
# comments in this function
if sess is not None:
# optional behavior #1 - expire the "Network.subnets"
# collection on the existing "network" object
if relationship_prop.back_populates and \
relationship_prop.key in target.__dict__:
obj = getattr(target, relationship_prop.key)
if obj is not None and sqlalchemy.inspect(obj).persistent:
sess.expire(obj, [relationship_prop.back_populates])
# optional behavior #2 - expire the "Subnet.network"
if sqlalchemy.inspect(target).persistent:
sess.expire(target, [relationship_prop.key])
# optional behavior #3 - "trick" the ORM by actually
# setting the value ahead of time, then emitting a load
# for the attribute so that the *new* Subnet.network
# is loaded. Then, expire Network.subnets on *that*.
# Other techniques here including looking in the identity
# map for "value", if this is a simple many-to-one get.
if relationship_prop.back_populates:
target.__dict__[column_attr] = fk_value
new = getattr(target, relationship_prop.key)
if new is not None:
if sqlalchemy.inspect(new).persistent:
sess.expire(new, [relationship_prop.back_populates])
else:
# no Session yet, do it later. This path is reached from the 'expire'
# listener setup by '_expire_prop_on_col' below, when a foreign key
# is directly assigned to in the many to one side of a relationship.
# i.e. assigning directly to Subnet.network_id before Subnet is added
# to the session
if target not in _emit_on_pending:
_emit_on_pending[target] = []
_emit_on_pending[target].append(
(fk_value, relationship_prop, column_attr))
_emit_on_pending = weakref.WeakKeyDictionary()
@event.listens_for(orm.session.Session, "pending_to_persistent")
def _pending_callables(session, obj):
"""Expire relationships when a new object w/ a foreign key becomes
persistent
"""
if obj is None:
return
args = _emit_on_pending.pop(obj, [])
for a in args:
if a is not None:
expire_for_fk_change(obj, *a)
@event.listens_for(orm.session.Session, "persistent_to_deleted")
def _persistent_to_deleted(session, obj):
"""Expire relationships when an object w/ a foreign key becomes deleted"""
mapper = sqlalchemy.inspect(obj).mapper
for prop in mapper.relationships:
if prop.direction is orm.interfaces.MANYTOONE:
for col in prop.local_columns:
colkey = mapper.get_property_by_column(col).key
expire_for_fk_change(obj, None, prop, colkey)
@event.listens_for(model_base.BASEV2, "attribute_instrument", propagate=True)
def _listen_for_changes(cls, key, inst):
mapper = sqlalchemy.inspect(cls)
if key not in mapper.relationships:
return
prop = inst.property
if prop.direction is orm.interfaces.MANYTOONE:
for col in prop.local_columns:
colkey = mapper.get_property_by_column(col).key
_expire_prop_on_col(cls, prop, colkey)
elif prop.direction is orm.interfaces.ONETOMANY:
remote_mapper = prop.mapper
# the collection *has* to have a MANYTOONE backref so we
# can look up the parent. so here we make one if it doesn't
# have it already, as is the case in this example
if not prop.back_populates:
name = "_%s_backref" % prop.key
backref_prop = orm.relationship(
prop.parent, back_populates=prop.key)
remote_mapper.add_property(name, backref_prop)
prop.back_populates = name
def _expire_prop_on_col(cls, prop, colkey):
@event.listens_for(getattr(cls, colkey), "set")
def expire(target, value, oldvalue, initiator):
"""Expire relationships when the foreign key attribute on
an object changes
"""
expire_for_fk_change(target, value, prop, colkey)