# Copyright 2014 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import itertools import math import re import typing as ty import os_resource_classes as orc import os_traits from oslo_log import log as logging from oslo_utils import strutils from oslo_utils import units import nova.conf from nova import exception from nova.i18n import _ from nova import objects from nova.objects import fields from nova.pci import stats CONF = nova.conf.CONF LOG = logging.getLogger(__name__) MEMPAGES_SMALL = -1 MEMPAGES_LARGE = -2 MEMPAGES_ANY = -3 class VTPMConfig(ty.NamedTuple): version: str model: str def get_vcpu_pin_set(): """Parse ``vcpu_pin_set`` config. :returns: A set of host CPU IDs that can be used for VCPU and PCPU allocations. """ if not CONF.vcpu_pin_set: return None cpuset_ids = parse_cpu_spec(CONF.vcpu_pin_set) if not cpuset_ids: msg = _("No CPUs available after parsing 'vcpu_pin_set' config, %r") raise exception.Invalid(msg % CONF.vcpu_pin_set) return cpuset_ids def get_cpu_dedicated_set(): """Parse ``[compute] cpu_dedicated_set`` config. :returns: A set of host CPU IDs that can be used for PCPU allocations. """ if not CONF.compute.cpu_dedicated_set: return None cpu_ids = parse_cpu_spec(CONF.compute.cpu_dedicated_set) if not cpu_ids: msg = _("No CPUs available after parsing '[compute] " "cpu_dedicated_set' config, %r") raise exception.Invalid(msg % CONF.compute.cpu_dedicated_set) return cpu_ids def get_cpu_shared_set(): """Parse ``[compute] cpu_shared_set`` config. :returns: A set of host CPU IDs that can be used for emulator threads and, optionally, for VCPU allocations. """ if not CONF.compute.cpu_shared_set: return None shared_ids = parse_cpu_spec(CONF.compute.cpu_shared_set) if not shared_ids: msg = _("No CPUs available after parsing '[compute] cpu_shared_set' " "config, %r") raise exception.Invalid(msg % CONF.compute.cpu_shared_set) return shared_ids def parse_cpu_spec(spec: str) -> ty.Set[int]: """Parse a CPU set specification. Each element in the list is either a single CPU number, a range of CPU numbers, or a caret followed by a CPU number to be excluded from a previous range. :param spec: cpu set string eg "1-4,^3,6" :returns: a set of CPU indexes """ cpuset_ids: ty.Set[int] = set() cpuset_reject_ids: ty.Set[int] = set() for rule in spec.split(','): rule = rule.strip() # Handle multi ',' if len(rule) < 1: continue # Note the count limit in the .split() call range_parts = rule.split('-', 1) if len(range_parts) > 1: reject = False if range_parts[0] and range_parts[0][0] == '^': reject = True range_parts[0] = str(range_parts[0][1:]) # So, this was a range; start by converting the parts to ints try: start, end = [int(p.strip()) for p in range_parts] except ValueError: raise exception.Invalid(_("Invalid range expression %r") % rule) # Make sure it's a valid range if start > end: raise exception.Invalid(_("Invalid range expression %r") % rule) # Add available CPU ids to set if not reject: cpuset_ids |= set(range(start, end + 1)) else: cpuset_reject_ids |= set(range(start, end + 1)) elif rule[0] == '^': # Not a range, the rule is an exclusion rule; convert to int try: cpuset_reject_ids.add(int(rule[1:].strip())) except ValueError: raise exception.Invalid(_("Invalid exclusion " "expression %r") % rule) else: # OK, a single CPU to include; convert to int try: cpuset_ids.add(int(rule)) except ValueError: raise exception.Invalid(_("Invalid inclusion " "expression %r") % rule) # Use sets to handle the exclusion rules for us cpuset_ids -= cpuset_reject_ids return cpuset_ids def format_cpu_spec( cpuset: ty.Set[int], allow_ranges: bool = True, ) -> str: """Format a libvirt CPU range specification. Format a set/list of CPU indexes as a libvirt CPU range specification. If allow_ranges is true, it will try to detect continuous ranges of CPUs, otherwise it will just list each CPU index explicitly. :param cpuset: set (or list) of CPU indexes :param allow_ranges: Whether we should attempt to detect continuous ranges of CPUs. :returns: a formatted CPU range string """ # We attempt to detect ranges, but don't bother with # trying to do range negations to minimize the overall # spec string length if allow_ranges: ranges: ty.List[ty.List[int]] = [] previndex = None for cpuindex in sorted(cpuset): if previndex is None or previndex != (cpuindex - 1): ranges.append([]) ranges[-1].append(cpuindex) previndex = cpuindex parts = [] for entry in ranges: if len(entry) == 1: parts.append(str(entry[0])) else: parts.append("%d-%d" % (entry[0], entry[len(entry) - 1])) return ",".join(parts) else: return ",".join(str(id) for id in sorted(cpuset)) def get_number_of_serial_ports(flavor, image_meta): """Get the number of serial consoles from the flavor or image. If flavor extra specs is not set, then any image meta value is permitted. If flavor extra specs *is* set, then this provides the default serial port count. The image meta is permitted to override the extra specs, but *only* with a lower value, i.e.: - flavor hw:serial_port_count=4 VM gets 4 serial ports - flavor hw:serial_port_count=4 and image hw_serial_port_count=2 VM gets 2 serial ports - image hw_serial_port_count=6 VM gets 6 serial ports - flavor hw:serial_port_count=4 and image hw_serial_port_count=6 Abort guest boot - forbidden to exceed flavor value :param flavor: Flavor object to read extra specs from :param image_meta: nova.objects.ImageMeta object instance :raises: exception.ImageSerialPortNumberInvalid if the serial port count is not a valid integer :raises: exception.ImageSerialPortNumberExceedFlavorValue if the serial port count defined in image is greater than that of flavor :returns: number of serial ports """ flavor_num_ports, image_num_ports = _get_flavor_image_meta( 'serial_port_count', flavor, image_meta) if flavor_num_ports: try: flavor_num_ports = int(flavor_num_ports) except ValueError: raise exception.ImageSerialPortNumberInvalid( num_ports=flavor_num_ports) if flavor_num_ports and image_num_ports: if image_num_ports > flavor_num_ports: raise exception.ImageSerialPortNumberExceedFlavorValue() return image_num_ports return flavor_num_ports or image_num_ports or 1 class InstanceInfo(object): def __init__(self, state, internal_id=None): """Create a new Instance Info object :param state: Required. The running state, one of the power_state codes :param internal_id: Optional. A unique ID for the instance. Need not be related to the Instance.uuid. """ self.state = state self.internal_id = internal_id def __eq__(self, other): return (self.__class__ == other.__class__ and self.__dict__ == other.__dict__) def _score_cpu_topology(topology, wanttopology): """Compare a topology against a desired configuration. Calculate a score indicating how well a provided topology matches against a preferred topology, where: a score of 3 indicates an exact match for sockets, cores and threads a score of 2 indicates a match of sockets and cores, or sockets and threads, or cores and threads a score of 1 indicates a match of sockets or cores or threads a score of 0 indicates no match :param wanttopology: nova.objects.VirtCPUTopology instance for preferred topology :returns: score in range 0 (worst) to 3 (best) """ score = 0 if wanttopology.sockets and topology.sockets == wanttopology.sockets: score = score + 1 if wanttopology.cores and topology.cores == wanttopology.cores: score = score + 1 if wanttopology.threads and topology.threads == wanttopology.threads: score = score + 1 return score def get_cpu_topology_constraints(flavor, image_meta): """Get the topology constraints declared in flavor or image Extracts the topology constraints from the configuration defined in the flavor extra specs or the image metadata. In the flavor this will look for: hw:cpu_sockets - preferred socket count hw:cpu_cores - preferred core count hw:cpu_threads - preferred thread count hw:cpu_max_sockets - maximum socket count hw:cpu_max_cores - maximum core count hw:cpu_max_threads - maximum thread count In the image metadata this will look at: hw_cpu_sockets - preferred socket count hw_cpu_cores - preferred core count hw_cpu_threads - preferred thread count hw_cpu_max_sockets - maximum socket count hw_cpu_max_cores - maximum core count hw_cpu_max_threads - maximum thread count The image metadata must be strictly lower than any values set in the flavor. All values are, however, optional. :param flavor: Flavor object to read extra specs from :param image_meta: nova.objects.ImageMeta object instance :raises: exception.ImageVCPULimitsRangeExceeded if the maximum counts set against the image exceed the maximum counts set against the flavor :raises: exception.ImageVCPUTopologyRangeExceeded if the preferred counts set against the image exceed the maximum counts set against the image or flavor :raises: exception.InvalidRequest if one of the provided flavor properties is a non-integer :returns: A two-tuple of objects.VirtCPUTopology instances. The first element corresponds to the preferred topology, while the latter corresponds to the maximum topology, based on upper limits. """ flavor_max_sockets, image_max_sockets = _get_flavor_image_meta( 'cpu_max_sockets', flavor, image_meta, 0) flavor_max_cores, image_max_cores = _get_flavor_image_meta( 'cpu_max_cores', flavor, image_meta, 0) flavor_max_threads, image_max_threads = _get_flavor_image_meta( 'cpu_max_threads', flavor, image_meta, 0) # image metadata is already of the correct type try: flavor_max_sockets = int(flavor_max_sockets) flavor_max_cores = int(flavor_max_cores) flavor_max_threads = int(flavor_max_threads) except ValueError as e: msg = _('Invalid flavor extra spec. Error: %s') % str(e) raise exception.InvalidRequest(msg) LOG.debug("Flavor limits %(sockets)d:%(cores)d:%(threads)d", {"sockets": flavor_max_sockets, "cores": flavor_max_cores, "threads": flavor_max_threads}) LOG.debug("Image limits %(sockets)d:%(cores)d:%(threads)d", {"sockets": image_max_sockets, "cores": image_max_cores, "threads": image_max_threads}) # Image limits are not permitted to exceed the flavor # limits. ie they can only lower what the flavor defines if ((flavor_max_sockets and image_max_sockets > flavor_max_sockets) or (flavor_max_cores and image_max_cores > flavor_max_cores) or (flavor_max_threads and image_max_threads > flavor_max_threads)): raise exception.ImageVCPULimitsRangeExceeded( image_sockets=image_max_sockets, image_cores=image_max_cores, image_threads=image_max_threads, flavor_sockets=flavor_max_sockets, flavor_cores=flavor_max_cores, flavor_threads=flavor_max_threads) max_sockets = image_max_sockets or flavor_max_sockets or 65536 max_cores = image_max_cores or flavor_max_cores or 65536 max_threads = image_max_threads or flavor_max_threads or 65536 flavor_sockets, image_sockets = _get_flavor_image_meta( 'cpu_sockets', flavor, image_meta, 0) flavor_cores, image_cores = _get_flavor_image_meta( 'cpu_cores', flavor, image_meta, 0) flavor_threads, image_threads = _get_flavor_image_meta( 'cpu_threads', flavor, image_meta, 0) try: flavor_sockets = int(flavor_sockets) flavor_cores = int(flavor_cores) flavor_threads = int(flavor_threads) except ValueError as e: msg = _('Invalid flavor extra spec. Error: %s') % str(e) raise exception.InvalidRequest(msg) LOG.debug("Flavor pref %(sockets)d:%(cores)d:%(threads)d", {"sockets": flavor_sockets, "cores": flavor_cores, "threads": flavor_threads}) LOG.debug("Image pref %(sockets)d:%(cores)d:%(threads)d", {"sockets": image_sockets, "cores": image_cores, "threads": image_threads}) # If the image limits have reduced the flavor limits we might need # to discard the preferred topology from the flavor if ((flavor_sockets > max_sockets) or (flavor_cores > max_cores) or (flavor_threads > max_threads)): flavor_sockets = flavor_cores = flavor_threads = 0 # However, image topology is not permitted to exceed image/flavor # limits if ((image_sockets > max_sockets) or (image_cores > max_cores) or (image_threads > max_threads)): raise exception.ImageVCPUTopologyRangeExceeded( image_sockets=image_sockets, image_cores=image_cores, image_threads=image_threads, max_sockets=max_sockets, max_cores=max_cores, max_threads=max_threads) # If no preferred topology was set against the image then use the # preferred topology from the flavor. We use 'not or' rather than # 'not and', since if any value is set against the image this # invalidates the entire set of values from the flavor if not any((image_sockets, image_cores, image_threads)): sockets = flavor_sockets cores = flavor_cores threads = flavor_threads else: sockets = image_sockets cores = image_cores threads = image_threads LOG.debug('Chose sockets=%(sockets)d, cores=%(cores)d, ' 'threads=%(threads)d; limits were sockets=%(maxsockets)d, ' 'cores=%(maxcores)d, threads=%(maxthreads)d', {"sockets": sockets, "cores": cores, "threads": threads, "maxsockets": max_sockets, "maxcores": max_cores, "maxthreads": max_threads}) return (objects.VirtCPUTopology(sockets=sockets, cores=cores, threads=threads), objects.VirtCPUTopology(sockets=max_sockets, cores=max_cores, threads=max_threads)) def _get_possible_cpu_topologies(vcpus, maxtopology, allow_threads): """Get a list of possible topologies for a vCPU count. Given a total desired vCPU count and constraints on the maximum number of sockets, cores and threads, return a list of objects.VirtCPUTopology instances that represent every possible topology that satisfies the constraints. :param vcpus: total number of CPUs for guest instance :param maxtopology: objects.VirtCPUTopology instance for upper limits :param allow_threads: True if the hypervisor supports CPU threads :raises: exception.ImageVCPULimitsRangeImpossible if it is impossible to achieve the total vcpu count given the maximum limits on sockets, cores and threads :returns: list of objects.VirtCPUTopology instances """ # Clamp limits to number of vcpus to prevent # iterating over insanely large list maxsockets = min(vcpus, maxtopology.sockets) maxcores = min(vcpus, maxtopology.cores) maxthreads = min(vcpus, maxtopology.threads) if not allow_threads: maxthreads = 1 LOG.debug("Build topologies for %(vcpus)d vcpu(s) " "%(maxsockets)d:%(maxcores)d:%(maxthreads)d", {"vcpus": vcpus, "maxsockets": maxsockets, "maxcores": maxcores, "maxthreads": maxthreads}) # Figure out all possible topologies that match # the required vcpus count and satisfy the declared # limits. If the total vCPU count were very high # it might be more efficient to factorize the vcpu # count and then only iterate over its factors, but # that's overkill right now possible = [] for s in range(1, maxsockets + 1): for c in range(1, maxcores + 1): for t in range(1, maxthreads + 1): if (t * c * s) != vcpus: continue possible.append( objects.VirtCPUTopology(sockets=s, cores=c, threads=t)) # We want to # - Minimize threads (ie larger sockets * cores is best) # - Prefer sockets over cores possible = sorted(possible, reverse=True, key=lambda x: (x.sockets * x.cores, x.sockets, x.threads)) LOG.debug("Got %d possible topologies", len(possible)) if len(possible) == 0: raise exception.ImageVCPULimitsRangeImpossible(vcpus=vcpus, sockets=maxsockets, cores=maxcores, threads=maxthreads) return possible def _filter_for_numa_threads(possible, wantthreads): """Filter topologies which closest match to NUMA threads. Determine which topologies provide the closest match to the number of threads desired by the NUMA topology of the instance. The possible topologies may not have any entries which match the desired thread count. This method will find the topologies which have the closest matching count. For example, if 'wantthreads' is 4 and the possible topologies has entries with 6, 3, 2 or 1 threads, the topologies which have 3 threads will be identified as the closest match not greater than 4 and will be returned. :param possible: list of objects.VirtCPUTopology instances :param wantthreads: desired number of threads :returns: list of objects.VirtCPUTopology instances """ # First figure out the largest available thread # count which is not greater than wantthreads mostthreads = 0 for topology in possible: if topology.threads > wantthreads: continue if topology.threads > mostthreads: mostthreads = topology.threads # Now restrict to just those topologies which # match the largest thread count bestthreads = [] for topology in possible: if topology.threads != mostthreads: continue bestthreads.append(topology) return bestthreads def _sort_possible_cpu_topologies(possible, wanttopology): """Sort the topologies in order of preference. Sort the provided list of possible topologies such that the configurations which most closely match the preferred topology are first. :param possible: list of objects.VirtCPUTopology instances :param wanttopology: objects.VirtCPUTopology instance for preferred topology :returns: sorted list of nova.objects.VirtCPUTopology instances """ # Look at possible topologies and score them according # to how well they match the preferred topologies # We don't use python's sort(), since we want to # preserve the sorting done when populating the # 'possible' list originally scores: ty.Dict[int, ty.List['objects.VirtCPUTopology']] = ( collections.defaultdict(list) ) for topology in possible: score = _score_cpu_topology(topology, wanttopology) scores[score].append(topology) # Build list of all possible topologies sorted # by the match score, best match first desired = [] desired.extend(scores[3]) desired.extend(scores[2]) desired.extend(scores[1]) desired.extend(scores[0]) return desired def _get_desirable_cpu_topologies(flavor, image_meta, allow_threads=True, numa_topology=None): """Identify desirable CPU topologies based for given constraints. Look at the properties set in the flavor extra specs and the image metadata and build up a list of all possible valid CPU topologies that can be used in the guest. Then return this list sorted in order of preference. :param flavor: objects.Flavor instance to query extra specs from :param image_meta: nova.objects.ImageMeta object instance :param allow_threads: if the hypervisor supports CPU threads :param numa_topology: objects.InstanceNUMATopology instance that may contain additional topology constraints (such as threading information) that should be considered :returns: sorted list of objects.VirtCPUTopology instances """ LOG.debug("Getting desirable topologies for flavor %(flavor)s " "and image_meta %(image_meta)s, allow threads: %(threads)s", {"flavor": flavor, "image_meta": image_meta, "threads": allow_threads}) preferred, maximum = get_cpu_topology_constraints(flavor, image_meta) LOG.debug("Topology preferred %(preferred)s, maximum %(maximum)s", {"preferred": preferred, "maximum": maximum}) possible = _get_possible_cpu_topologies(flavor.vcpus, maximum, allow_threads) LOG.debug("Possible topologies %s", possible) if numa_topology: min_requested_threads = None cell_topologies = [cell.cpu_topology for cell in numa_topology.cells if ('cpu_topology' in cell and cell.cpu_topology)] if cell_topologies: min_requested_threads = min( topo.threads for topo in cell_topologies) if min_requested_threads: if preferred.threads: min_requested_threads = min(preferred.threads, min_requested_threads) specified_threads = max(1, min_requested_threads) LOG.debug("Filtering topologies best for %d threads", specified_threads) possible = _filter_for_numa_threads(possible, specified_threads) LOG.debug("Remaining possible topologies %s", possible) desired = _sort_possible_cpu_topologies(possible, preferred) LOG.debug("Sorted desired topologies %s", desired) return desired def get_best_cpu_topology(flavor, image_meta, allow_threads=True, numa_topology=None): """Identify best CPU topology for given constraints. Look at the properties set in the flavor extra specs and the image metadata and build up a list of all possible valid CPU topologies that can be used in the guest. Then return the best topology to use :param flavor: objects.Flavor instance to query extra specs from :param image_meta: nova.objects.ImageMeta object instance :param allow_threads: if the hypervisor supports CPU threads :param numa_topology: objects.InstanceNUMATopology instance that may contain additional topology constraints (such as threading information) that should be considered :returns: an objects.VirtCPUTopology instance for best topology """ return _get_desirable_cpu_topologies(flavor, image_meta, allow_threads, numa_topology)[0] def _numa_cell_supports_pagesize_request(host_cell, inst_cell): """Determine whether the cell can accept the request. :param host_cell: host cell to fit the instance cell onto :param inst_cell: instance cell we want to fit :raises: exception.MemoryPageSizeNotSupported if custom page size not supported in host cell :returns: the page size able to be handled by host_cell """ avail_pagesize = [page.size_kb for page in host_cell.mempages] avail_pagesize.sort(reverse=True) def verify_pagesizes(host_cell, inst_cell, avail_pagesize): inst_cell_mem = inst_cell.memory * units.Ki for pagesize in avail_pagesize: if host_cell.can_fit_pagesize(pagesize, inst_cell_mem): return pagesize if inst_cell.pagesize == MEMPAGES_SMALL: return verify_pagesizes(host_cell, inst_cell, avail_pagesize[-1:]) elif inst_cell.pagesize == MEMPAGES_LARGE: return verify_pagesizes(host_cell, inst_cell, avail_pagesize[:-1]) elif inst_cell.pagesize == MEMPAGES_ANY: return verify_pagesizes(host_cell, inst_cell, avail_pagesize) else: return verify_pagesizes(host_cell, inst_cell, [inst_cell.pagesize]) def _pack_instance_onto_cores(host_cell, instance_cell, num_cpu_reserved=0): """Pack an instance onto a set of siblings. Calculate the pinning for the given instance and its topology, making sure that hyperthreads of the instance match up with those of the host when the pinning takes effect. Also ensure that the physical cores reserved for hypervisor on this host NUMA node do not break any thread policies. Currently the strategy for packing is to prefer siblings and try use cores evenly by using emptier cores first. This is achieved by the way we order cores in the sibling_sets structure, and the order in which we iterate through it. The main packing loop that iterates over the sibling_sets dictionary will not currently try to look for a fit that maximizes number of siblings, but will simply rely on the iteration ordering and picking the first viable placement. :param host_cell: objects.NUMACell instance - the host cell that the instance should be pinned to :param instance_cell: An instance of objects.InstanceNUMACell describing the pinning requirements of the instance :param num_cpu_reserved: number of pCPUs reserved for hypervisor :returns: An instance of objects.InstanceNUMACell containing the pinning information, the physical cores reserved and potentially a new topology to be exposed to the instance. None if there is no valid way to satisfy the sibling requirements for the instance. """ # get number of threads per core in host's cell threads_per_core = max(map(len, host_cell.siblings)) or 1 LOG.debug('Packing an instance onto a set of siblings: ' ' host_cell_free_siblings: %(siblings)s' ' instance_cell: %(cells)s' ' host_cell_id: %(host_cell_id)s' ' threads_per_core: %(threads_per_core)s' ' num_cpu_reserved: %(num_cpu_reserved)s', {'siblings': host_cell.free_siblings, 'cells': instance_cell, 'host_cell_id': host_cell.id, 'threads_per_core': threads_per_core, 'num_cpu_reserved': num_cpu_reserved}) # We build up a data structure that answers the question: 'Given the # number of threads I want to pack, give me a list of all the available # sibling sets (or groups thereof) that can accommodate it' sibling_sets: ty.Dict[int, ty.List[ty.Set[int]]] = ( collections.defaultdict(list) ) for sib in host_cell.free_siblings: for threads_no in range(1, len(sib) + 1): sibling_sets[threads_no].append(sib) LOG.debug('Built sibling_sets: %(siblings)s', {'siblings': sibling_sets}) pinning = None threads_no = 1 def _orphans(instance_cell, threads_per_core): """Number of instance CPUs which will not fill up a host core. Best explained by an example: consider set of free host cores as such: [(0, 1), (3, 5), (6, 7, 8)] This would be a case of 2 threads_per_core AKA an entry for 2 in the sibling_sets structure. If we attempt to pack a 5 core instance on it - due to the fact that we iterate the list in order, we will end up with a single core of the instance pinned to a thread "alone" (with id 6), and we would have one 'orphan' vcpu. """ return len(instance_cell) % threads_per_core def _threads(instance_cell, threads_per_core): """Threads to expose to the instance via the VirtCPUTopology. This is calculated by taking the GCD of the number of threads we are considering at the moment, and the number of orphans. An example for instance_cell = 6 threads_per_core = 4 So we can fit the instance as such: [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)] x x x x x x We can't expose 4 threads, as that will not be a valid topology (all cores exposed to the guest have to have an equal number of threads), and 1 would be too restrictive, but we want all threads that guest sees to be on the same physical core, so we take GCD of 4 (max number of threads) and 2 (number of 'orphan' CPUs) and get 2 as the number of threads. """ return math.gcd(threads_per_core, _orphans(instance_cell, threads_per_core)) def _get_pinning(threads_no, sibling_set, instance_cores): """Determines pCPUs/vCPUs mapping Determines the pCPUs/vCPUs mapping regarding the number of threads which can be used per cores. :param threads_no: Number of host threads per cores which can be used to pin vCPUs according to the policies. :param sibling_set: List of available threads per host cores on a specific host NUMA node. :param instance_cores: Set of vCPUs requested. NOTE: Depending on how host is configured (HT/non-HT) a thread can be considered as an entire core. """ if threads_no * len(sibling_set) < (len(instance_cores)): return None # Determines usable cores according the "threads number" # constraint. # # For a sibling_set=[(0, 1, 2, 3), (4, 5, 6, 7)] and thread_no 1: # usable_cores=[[0], [4]] # # For a sibling_set=[(0, 1, 2, 3), (4, 5, 6, 7)] and thread_no 2: # usable_cores=[[0, 1], [4, 5]] usable_cores = list(map(lambda s: list(s)[:threads_no], sibling_set)) # Determines the mapping vCPUs/pCPUs based on the sets of # usable cores. # # For an instance_cores=[2, 3], usable_cores=[[0], [4]] # vcpus_pinning=[(2, 0), (3, 4)] vcpus_pinning = list(zip(sorted(instance_cores), itertools.chain(*usable_cores))) msg = ("Computed NUMA topology CPU pinning: usable pCPUs: " "%(usable_cores)s, vCPUs mapping: %(vcpus_pinning)s") msg_args = { 'usable_cores': usable_cores, 'vcpus_pinning': vcpus_pinning, } LOG.info(msg, msg_args) return vcpus_pinning def _get_reserved(sibling_set, vcpus_pinning, num_cpu_reserved=0, cpu_thread_isolate=False): """Given available sibling_set, returns the pCPUs reserved for hypervisor. :param sibling_set: List of available threads per host cores on a specific host NUMA node. :param vcpus_pinning: List of tuple of (pCPU, vCPU) mapping. :param num_cpu_reserved: Number of additional host CPUs which need to be reserved. :param cpu_thread_isolate: True if CPUThreadAllocationPolicy is ISOLATE. """ if not vcpus_pinning: return None cpuset_reserved = None usable_cores = list(map(lambda s: list(s), sibling_set)) if num_cpu_reserved: # Updates the pCPUs used based on vCPUs pinned to. # For the case vcpus_pinning=[(0, 0), (1, 2)] and # usable_cores=[[0, 1], [2, 3], [4, 5]], # if CPUThreadAllocationPolicy is isolated, we want # to update usable_cores=[[4, 5]]. # If CPUThreadAllocationPolicy is *not* isolated, # we want to update usable_cores=[[1],[3],[4, 5]]. for vcpu, pcpu in vcpus_pinning: for sib in usable_cores: if pcpu in sib: if cpu_thread_isolate: usable_cores.remove(sib) else: sib.remove(pcpu) # Determines the pCPUs reserved for hypervisor # # For usable_cores=[[1],[3],[4, 5]], num_cpu_reserved=1 # cpuset_reserved=set([1]) cpuset_reserved = set(list( itertools.chain(*usable_cores))[:num_cpu_reserved]) msg = ("Computed NUMA topology reserved pCPUs: usable pCPUs: " "%(usable_cores)s, reserved pCPUs: %(cpuset_reserved)s") msg_args = { 'usable_cores': usable_cores, 'cpuset_reserved': cpuset_reserved, } LOG.info(msg, msg_args) return cpuset_reserved or None if (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.REQUIRE): LOG.debug("Requested 'require' thread policy for %d cores", len(instance_cell)) elif (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.PREFER): LOG.debug("Requested 'prefer' thread policy for %d cores", len(instance_cell)) elif (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.ISOLATE): LOG.debug("Requested 'isolate' thread policy for %d cores", len(instance_cell)) else: LOG.debug("User did not specify a thread policy. Using default " "for %d cores", len(instance_cell)) if (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.ISOLATE): # make sure we have at least one fully free core if threads_per_core not in sibling_sets: LOG.debug('Host does not have any fully free thread sibling sets.' 'It is not possible to emulate a non-SMT behavior ' 'for the isolate policy without this.') return # TODO(stephenfin): Drop this when we drop support for 'vcpu_pin_set' # NOTE(stephenfin): This is total hack. We're relying on the fact that # the libvirt driver, which is the only one that currently supports # pinned CPUs, will set cpuset and pcpuset to the same value if using # legacy configuration, i.e. 'vcpu_pin_set', as part of # '_get_host_numa_topology'. They can't be equal otherwise since # 'cpu_dedicated_set' and 'cpu_shared_set' must be disjoint. Therefore, # if these are equal, the host that this NUMA cell corresponds to is # using legacy configuration and it's okay to use the old, "pin a core # and reserve its siblings" implementation of the 'isolate' policy. If # they're not, the host is using new-style configuration and we've just # hit bug #1889633 if threads_per_core != 1 and host_cell.pcpuset != host_cell.cpuset: LOG.warning( "Host supports hyperthreads, but instance requested no " "hyperthreads. This should have been rejected by the " "scheduler but we likely got here due to the fallback VCPU " "query. Consider setting '[workarounds] " "disable_fallback_pcpu_query' to 'True' once hosts are no " "longer using 'vcpu_pin_set'. Refer to bug #1889633 for more " "information." ) return pinning = _get_pinning( 1, # we only want to "use" one thread per core sibling_sets[threads_per_core], instance_cell.pcpuset) cpuset_reserved = _get_reserved( sibling_sets[1], pinning, num_cpu_reserved=num_cpu_reserved, cpu_thread_isolate=True) if not pinning or (num_cpu_reserved and not cpuset_reserved): pinning, cpuset_reserved = (None, None) else: # REQUIRE, PREFER (explicit, implicit) if (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.REQUIRE): # make sure we actually have some siblings to play with if threads_per_core <= 1: LOG.info("Host does not support hyperthreading or " "hyperthreading is disabled, but 'require' " "threads policy was requested.") return # NOTE(ndipanov): We iterate over the sibling sets in descending order # of cores that can be packed. This is an attempt to evenly distribute # instances among physical cores for threads_no, sibling_set in sorted( (t for t in sibling_sets.items()), reverse=True): # NOTE(sfinucan): The key difference between the require and # prefer policies is that require will not settle for non-siblings # if this is all that is available. Enforce this by ensuring we're # using sibling sets that contain at least one sibling if (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.REQUIRE): if threads_no <= 1: LOG.debug('Skipping threads_no: %s, as it does not satisfy' ' the require policy', threads_no) continue pinning = _get_pinning( threads_no, sibling_set, instance_cell.pcpuset) cpuset_reserved = _get_reserved( sibling_sets[1], pinning, num_cpu_reserved=num_cpu_reserved) if not pinning or (num_cpu_reserved and not cpuset_reserved): continue break # NOTE(sfinucan): If siblings weren't available and we're using PREFER # (implicitly or explicitly), fall back to linear assignment across # cores if (instance_cell.cpu_thread_policy != fields.CPUThreadAllocationPolicy.REQUIRE and not pinning): threads_no = 1 # we create a fake sibling set by splitting all sibling sets and # treating each core as if it has no siblings. This is necessary # because '_get_pinning' will normally only take the same amount of # cores ('threads_no' cores) from each sibling set. This is rather # desirable when we're seeking to apply a thread policy but it is # less desirable when we only care about resource usage as we do # here. By treating each core as independent, as we do here, we # maximize resource usage for almost-full nodes at the expense of a # possible performance impact to the guest. sibling_set = [set([x]) for x in itertools.chain(*sibling_sets[1])] pinning = _get_pinning( threads_no, sibling_set, instance_cell.pcpuset) cpuset_reserved = _get_reserved( sibling_set, pinning, num_cpu_reserved=num_cpu_reserved) threads_no = _threads(instance_cell, threads_no) if not pinning or (num_cpu_reserved and not cpuset_reserved): return LOG.debug('Selected cores for pinning: %s, in cell %s', pinning, host_cell.id) # TODO(stephenfin): we're using this attribute essentially as a container # for the thread count used in '_get_desirable_cpu_topologies'; we should # drop it and either use a non-persistent attrbiute or add a new # 'min_threads' field topology = objects.VirtCPUTopology( sockets=1, cores=len(instance_cell) // threads_no, threads=threads_no) instance_cell.pin_vcpus(*pinning) instance_cell.cpu_topology = topology instance_cell.id = host_cell.id instance_cell.cpuset_reserved = cpuset_reserved return instance_cell def _numa_fit_instance_cell( host_cell: 'objects.NUMACell', instance_cell: 'objects.InstanceNUMACell', limits: ty.Optional['objects.NUMATopologyLimit'] = None, cpuset_reserved: int = 0, ) -> ty.Optional['objects.InstanceNUMACell']: """Ensure an instance cell can fit onto a host cell Ensure an instance cell can fit onto a host cell and, if so, return a new objects.InstanceNUMACell with the id set to that of the host. Returns None if the instance cell exceeds the limits of the host. :param host_cell: host cell to fit the instance cell onto :param instance_cell: instance cell we want to fit :param limits: an objects.NUMATopologyLimit or None :param cpuset_reserved: An int to indicate the number of CPUs overhead :returns: objects.InstanceNUMACell with the id set to that of the host, or None """ LOG.debug('Attempting to fit instance cell %(cell)s on host_cell ' '%(host_cell)s', {'cell': instance_cell, 'host_cell': host_cell}) if 'pagesize' in instance_cell and instance_cell.pagesize: # The instance has requested a page size. Verify that the requested # size is valid and that there are available pages of that size on the # host. pagesize = _numa_cell_supports_pagesize_request( host_cell, instance_cell) if not pagesize: LOG.debug('Host does not support requested memory pagesize, ' 'or not enough free pages of the requested size. ' 'Requested: %d kB', instance_cell.pagesize) return None LOG.debug('Selected memory pagesize: %(selected_mem_pagesize)d kB. ' 'Requested memory pagesize: %(requested_mem_pagesize)d ' '(small = -1, large = -2, any = -3)', {'selected_mem_pagesize': pagesize, 'requested_mem_pagesize': instance_cell.pagesize}) instance_cell.pagesize = pagesize else: # The instance provides a NUMA topology but does not define any # particular page size for its memory. if host_cell.mempages: # The host supports explicit page sizes. Use a pagesize-aware # memory check using the smallest available page size. pagesize = _get_smallest_pagesize(host_cell) LOG.debug('No specific pagesize requested for instance, ' 'selected pagesize: %d', pagesize) # we want to allow overcommit in this case as we're not using # hugepages if not host_cell.can_fit_pagesize(pagesize, instance_cell.memory * units.Ki, use_free=False): LOG.debug('Not enough available memory to schedule instance ' 'with pagesize %(pagesize)d. Required: ' '%(required)s, available: %(available)s, total: ' '%(total)s.', {'required': instance_cell.memory, 'available': host_cell.avail_memory, 'total': host_cell.memory, 'pagesize': pagesize}) return None else: # The host does not support explicit page sizes. Ignore pagesizes # completely. # NOTE(stephenfin): Do not allow an instance to overcommit against # itself on any NUMA cell, i.e. with 'ram_allocation_ratio = 2.0' # on a host with 1GB RAM, we should allow two 1GB instances but not # one 2GB instance. if instance_cell.memory > host_cell.memory: LOG.debug('Not enough host cell memory to fit instance cell. ' 'Required: %(required)d, actual: %(actual)d', {'required': instance_cell.memory, 'actual': host_cell.memory}) return None # NOTE(stephenfin): As with memory, do not allow an instance to overcommit # against itself on any NUMA cell if instance_cell.cpu_policy in ( fields.CPUAllocationPolicy.DEDICATED, fields.CPUAllocationPolicy.MIXED, ): required_cpus = len(instance_cell.pcpuset) + cpuset_reserved if required_cpus > len(host_cell.pcpuset): LOG.debug('Not enough host cell CPUs to fit instance cell; ' 'required: %(required)d + %(cpuset_reserved)d as ' 'overhead, actual: %(actual)d', { 'required': len(instance_cell.pcpuset), 'actual': len(host_cell.pcpuset), 'cpuset_reserved': cpuset_reserved }) return None if instance_cell.cpu_policy in ( fields.CPUAllocationPolicy.SHARED, fields.CPUAllocationPolicy.MIXED, None, ): required_cpus = len(instance_cell.cpuset) if required_cpus > len(host_cell.cpuset): LOG.debug('Not enough host cell CPUs to fit instance cell; ' 'required: %(required)d, actual: %(actual)d', { 'required': len(instance_cell.cpuset), 'actual': len(host_cell.cpuset), }) return None if instance_cell.cpu_policy in ( fields.CPUAllocationPolicy.DEDICATED, fields.CPUAllocationPolicy.MIXED, ): LOG.debug('Instance has requested pinned CPUs') required_cpus = len(instance_cell.pcpuset) + cpuset_reserved if required_cpus > host_cell.avail_pcpus: LOG.debug('Not enough available CPUs to schedule instance. ' 'Oversubscription is not possible with pinned ' 'instances. Required: %(required)d (%(vcpus)d + ' '%(num_cpu_reserved)d), actual: %(actual)d', {'required': required_cpus, 'vcpus': len(instance_cell.pcpuset), 'actual': host_cell.avail_pcpus, 'num_cpu_reserved': cpuset_reserved}) return None if instance_cell.memory > host_cell.avail_memory: LOG.debug('Not enough available memory to schedule instance. ' 'Oversubscription is not possible with pinned ' 'instances. Required: %(required)s, available: ' '%(available)s, total: %(total)s. ', {'required': instance_cell.memory, 'available': host_cell.avail_memory, 'total': host_cell.memory}) return None # Try to pack the instance cell onto cores instance_cell = _pack_instance_onto_cores( host_cell, instance_cell, num_cpu_reserved=cpuset_reserved, ) if not instance_cell: LOG.debug('Failed to map instance cell CPUs to host cell CPUs') return None if instance_cell.cpu_policy in ( fields.CPUAllocationPolicy.SHARED, fields.CPUAllocationPolicy.MIXED, None, ) and limits: LOG.debug( 'Instance has requested shared CPUs; considering limitations ' 'on usable CPU and memory.') cpu_usage = host_cell.cpu_usage + len(instance_cell.cpuset) cpu_limit = len(host_cell.cpuset) * limits.cpu_allocation_ratio if cpu_usage > cpu_limit: LOG.debug('Host cell has limitations on usable CPUs. There are ' 'not enough free CPUs to schedule this instance. ' 'Usage: %(usage)d, limit: %(limit)d', {'usage': cpu_usage, 'limit': cpu_limit}) return None ram_usage = host_cell.memory_usage + instance_cell.memory ram_limit = host_cell.memory * limits.ram_allocation_ratio if ram_usage > ram_limit: LOG.debug('Host cell has limitations on usable memory. There is ' 'not enough free memory to schedule this instance. ' 'Usage: %(usage)d, limit: %(limit)d', {'usage': ram_usage, 'limit': ram_limit}) return None instance_cell.id = host_cell.id return instance_cell def _get_flavor_image_meta( key: str, flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', default: ty.Any = None, ) -> ty.Tuple[ty.Any, ty.Any]: """Extract both flavor- and image-based variants of metadata.""" flavor_key = ':'.join(['hw', key]) image_key = '_'.join(['hw', key]) flavor_value = flavor.get('extra_specs', {}).get(flavor_key, default) image_value = image_meta.properties.get(image_key, default) return flavor_value, image_value def _get_unique_flavor_image_meta( key: str, flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', default: ty.Any = None ) -> ty.Any: """A variant of '_get_flavor_image_meta' that errors out on conflicts.""" flavor_value, image_value = _get_flavor_image_meta( key, flavor, image_meta, default, ) if image_value and flavor_value and image_value != flavor_value: msg = _( "Flavor %(flavor_name)s has hw:%(key)s extra spec explicitly " "set to %(flavor_val)s, conflicting with image %(image_name)s " "which has hw_%(key)s explicitly set to %(image_val)s." ) raise exception.FlavorImageConflict( msg % { 'key': key, 'flavor_name': flavor.name, 'flavor_val': flavor_value, 'image_name': image_meta.name, 'image_val': image_value, }, ) return flavor_value or image_value def get_mem_encryption_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', machine_type: ty.Optional[str] = None, ) -> bool: """Return a boolean indicating whether encryption of guest memory was requested, either via the hw:mem_encryption extra spec or the hw_mem_encryption image property (or both). Also watch out for contradictory requests between the flavor and image regarding memory encryption, and raise an exception where encountered. These conflicts can arise in two different ways: 1) the flavor requests memory encryption but the image explicitly requests *not* to have memory encryption, or vice-versa 2) the flavor and/or image request memory encryption, but the image is missing hw_firmware_type=uefi 3) the flavor and/or image request memory encryption, but the machine type is set to a value which does not contain 'q35' This can be called from the libvirt driver on the compute node, in which case the driver should pass the result of nova.virt.libvirt.utils.get_machine_type() as the machine_type parameter, or from the API layer, in which case get_machine_type() cannot be called since it relies on being run from the compute node in order to retrieve CONF.libvirt.hw_machine_type. :param instance_type: Flavor object :param image: an ImageMeta object :param machine_type: a string representing the machine type (optional) :raises: nova.exception.FlavorImageConflict :raises: nova.exception.InvalidMachineType :returns: boolean indicating whether encryption of guest memory was requested """ flavor_mem_enc_str, image_mem_enc = _get_flavor_image_meta( 'mem_encryption', flavor, image_meta) flavor_mem_enc = None if flavor_mem_enc_str is not None: flavor_mem_enc = strutils.bool_from_string(flavor_mem_enc_str) # Image property is a FlexibleBooleanField, so coercion to a # boolean is handled automatically if not flavor_mem_enc and not image_mem_enc: return False _check_for_mem_encryption_requirement_conflicts( flavor_mem_enc_str, flavor_mem_enc, image_mem_enc, flavor, image_meta) # If we get this far, either the extra spec or image property explicitly # specified a requirement regarding memory encryption, and if both did, # they are asking for the same thing. requesters = [] if flavor_mem_enc: requesters.append("hw:mem_encryption extra spec in %s flavor" % flavor.name) if image_mem_enc: requesters.append("hw_mem_encryption property of image %s" % image_meta.name) _check_mem_encryption_uses_uefi_image(requesters, image_meta) _check_mem_encryption_machine_type(image_meta, machine_type) LOG.debug("Memory encryption requested by %s", " and ".join(requesters)) return True def _check_for_mem_encryption_requirement_conflicts( flavor_mem_enc_str, flavor_mem_enc, image_mem_enc, flavor, image_meta): # Check for conflicts between explicit requirements regarding # memory encryption. if (flavor_mem_enc is not None and image_mem_enc is not None and flavor_mem_enc != image_mem_enc): emsg = _( "Flavor %(flavor_name)s has hw:mem_encryption extra spec " "explicitly set to %(flavor_val)s, conflicting with " "image %(image_name)s which has hw_mem_encryption property " "explicitly set to %(image_val)s" ) data = { 'flavor_name': flavor.name, 'flavor_val': flavor_mem_enc_str, 'image_name': image_meta.name, 'image_val': image_mem_enc, } raise exception.FlavorImageConflict(emsg % data) def _check_mem_encryption_uses_uefi_image(requesters, image_meta): if image_meta.properties.get('hw_firmware_type') == 'uefi': return emsg = _( "Memory encryption requested by %(requesters)s but image " "%(image_name)s doesn't have 'hw_firmware_type' property set to 'uefi'" ) data = {'requesters': " and ".join(requesters), 'image_name': image_meta.name} raise exception.FlavorImageConflict(emsg % data) def _check_mem_encryption_machine_type(image_meta, machine_type=None): # NOTE(aspiers): As explained in the SEV spec, SEV needs a q35 # machine type in order to bind all the virtio devices to the PCIe # bridge so that they use virtio 1.0 and not virtio 0.9, since # QEMU's iommu_platform feature was added in virtio 1.0 only: # # http://specs.openstack.org/openstack/nova-specs/specs/train/approved/amd-sev-libvirt-support.html # # So if the image explicitly requests a machine type which is not # in the q35 family, raise an exception. # # This check can be triggered both at API-level, at which point we # can't check here what value of CONF.libvirt.hw_machine_type may # have been configured on the compute node, and by the libvirt # driver, in which case the driver can check that config option # and will pass the machine_type parameter. mach_type = machine_type or image_meta.properties.get('hw_machine_type') # If hw_machine_type is not specified on the image and is not # configured correctly on SEV compute nodes, then a separate check # in the driver will catch that and potentially retry on other # compute nodes. if mach_type is None: return # Could be something like pc-q35-2.11 if a specific version of the # machine type is required, so do substring matching. if 'q35' not in mach_type: raise exception.InvalidMachineType( mtype=mach_type, image_id=image_meta.id, image_name=image_meta.name, reason=_("q35 type is required for SEV to work")) def _get_numa_pagesize_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[int]: """Return the requested memory page size :param flavor: a Flavor object to read extra specs from :param image_meta: nova.objects.ImageMeta object instance :raises: MemoryPageSizeInvalid if flavor extra spec or image metadata provides an invalid hugepage value :raises: MemoryPageSizeForbidden if flavor extra spec request conflicts with image metadata request :returns: a page size requested or MEMPAGES_* """ def check_and_return_pages_size(request): if request == "any": return MEMPAGES_ANY elif request == "large": return MEMPAGES_LARGE elif request == "small": return MEMPAGES_SMALL elif request.isdigit(): return int(request) try: return strutils.string_to_bytes( request, return_int=True) / units.Ki except ValueError: raise exception.MemoryPageSizeInvalid(pagesize=request) from None flavor_request, image_request = _get_flavor_image_meta( 'mem_page_size', flavor, image_meta) if not flavor_request and image_request: raise exception.MemoryPageSizeForbidden( pagesize=image_request, against="") if not flavor_request: # Nothing was specified for hugepages, # let's the default process running. return None pagesize = check_and_return_pages_size(flavor_request) if image_request and (pagesize in (MEMPAGES_ANY, MEMPAGES_LARGE)): return check_and_return_pages_size(image_request) elif image_request: raise exception.MemoryPageSizeForbidden( pagesize=image_request, against=flavor_request) return pagesize def _get_constraint_mappings_from_flavor(flavor, key, func): hw_numa_map = [] extra_specs = flavor.get('extra_specs', {}) for cellid in range(objects.ImageMetaProps.NUMA_NODES_MAX): prop = '%s.%d' % (key, cellid) if prop not in extra_specs: break hw_numa_map.append(func(extra_specs[prop])) return hw_numa_map or None def _get_numa_cpu_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[ty.List[ty.Set[int]]]: """Validate and return the requested guest NUMA-guest CPU mapping. Extract the user-provided mapping of guest CPUs to guest NUMA nodes. For example, the flavor extra spec ``hw:numa_cpus.0=0-1,4`` will map guest cores ``0``, ``1``, ``4`` to guest NUMA node ``0``. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :raises: exception.ImageNUMATopologyForbidden if both image metadata and flavor extra specs are defined. :return: An ordered list of sets of CPU indexes to assign to each guest NUMA node if matching extra specs or image metadata properties found, else None. """ flavor_cpu_list = _get_constraint_mappings_from_flavor( flavor, 'hw:numa_cpus', parse_cpu_spec) image_cpu_list = image_meta.properties.get('hw_numa_cpus', None) if flavor_cpu_list is None: return image_cpu_list if image_cpu_list is not None: raise exception.ImageNUMATopologyForbidden( name='hw_numa_cpus') return flavor_cpu_list def _get_numa_mem_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[ty.List[int]]: """Validate and return the requested guest NUMA-guest memory mapping. Extract the user-provided mapping of guest memory to guest NUMA nodes. For example, the flavor extra spec ``hw:numa_mem.0=1`` will map 1 GB of guest memory to guest NUMA node ``0``. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :raises: exception.ImageNUMATopologyForbidden if both image metadata and flavor extra specs are defined :return: An ordered list of memory (in GB) to assign to each guest NUMA node if matching extra specs or image metadata properties found, else None. """ flavor_mem_list = _get_constraint_mappings_from_flavor( flavor, 'hw:numa_mem', int) image_mem_list = image_meta.properties.get('hw_numa_mem', None) if flavor_mem_list is None: return image_mem_list if image_mem_list is not None: raise exception.ImageNUMATopologyForbidden( name='hw_numa_mem') return flavor_mem_list def _get_numa_node_count_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[int]: """Validate and return the requested NUMA nodes. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :raises: exception.ImageNUMATopologyForbidden if both image metadata and flavor extra specs are defined :raises: exception.InvalidNUMANodesNumber if the number of NUMA nodes is less than 1 or not an integer :returns: The number of NUMA nodes requested in either the flavor or image, else None. """ flavor_nodes, image_nodes = _get_flavor_image_meta( 'numa_nodes', flavor, image_meta) if flavor_nodes and image_nodes: raise exception.ImageNUMATopologyForbidden(name='hw_numa_nodes') nodes = flavor_nodes or image_nodes if nodes is not None and (not strutils.is_int_like(nodes) or int(nodes) < 1): raise exception.InvalidNUMANodesNumber(nodes=nodes) return int(nodes) if nodes else nodes # NOTE(stephenfin): This must be public as it's used elsewhere def get_cpu_policy_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[str]: """Validate and return the requested CPU policy. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :raises: exception.ImageCPUPinningForbidden if policy is defined on both image and flavor and these policies conflict. :raises: exception.InvalidCPUAllocationPolicy if policy is defined with invalid value in image or flavor. :returns: The CPU policy requested. """ flavor_policy, image_policy = _get_flavor_image_meta( 'cpu_policy', flavor, image_meta) if flavor_policy and (flavor_policy not in fields.CPUAllocationPolicy.ALL): raise exception.InvalidCPUAllocationPolicy( source='flavor extra specs', requested=flavor_policy, available=str(fields.CPUAllocationPolicy.ALL)) if image_policy and (image_policy not in fields.CPUAllocationPolicy.ALL): raise exception.InvalidCPUAllocationPolicy( source='image properties', requested=image_policy, available=str(fields.CPUAllocationPolicy.ALL)) if flavor_policy == fields.CPUAllocationPolicy.DEDICATED: cpu_policy = flavor_policy elif flavor_policy == fields.CPUAllocationPolicy.MIXED: if image_policy == fields.CPUAllocationPolicy.DEDICATED: raise exception.ImageCPUPinningForbidden() cpu_policy = flavor_policy elif flavor_policy == fields.CPUAllocationPolicy.SHARED: if image_policy in ( fields.CPUAllocationPolicy.MIXED, fields.CPUAllocationPolicy.DEDICATED, ): raise exception.ImageCPUPinningForbidden() cpu_policy = flavor_policy elif image_policy in fields.CPUAllocationPolicy.ALL: cpu_policy = image_policy else: cpu_policy = None return cpu_policy # NOTE(stephenfin): This must be public as it's used elsewhere def get_cpu_thread_policy_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[str]: """Validate and return the requested CPU thread policy. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :raises: exception.ImageCPUThreadPolicyForbidden if policy is defined on both image and flavor and these policies conflict. :raises: exception.InvalidCPUThreadAllocationPolicy if policy is defined with invalid value in image or flavor. :returns: The CPU thread policy requested. """ flavor_policy, image_policy = _get_flavor_image_meta( 'cpu_thread_policy', flavor, image_meta) if flavor_policy and ( flavor_policy not in fields.CPUThreadAllocationPolicy.ALL): raise exception.InvalidCPUThreadAllocationPolicy( source='flavor extra specs', requested=flavor_policy, available=str(fields.CPUThreadAllocationPolicy.ALL)) if image_policy and ( image_policy not in fields.CPUThreadAllocationPolicy.ALL): raise exception.InvalidCPUThreadAllocationPolicy( source='image properties', requested=image_policy, available=str(fields.CPUThreadAllocationPolicy.ALL)) if flavor_policy in [None, fields.CPUThreadAllocationPolicy.PREFER]: policy = flavor_policy or image_policy elif image_policy and image_policy != flavor_policy: raise exception.ImageCPUThreadPolicyForbidden() else: policy = flavor_policy return policy def _get_numa_topology_auto( nodes: int, flavor: 'objects.Flavor', vcpus: ty.Set[int], pcpus: ty.Set[int], ) -> 'objects.InstanceNUMATopology': """Generate a NUMA topology automatically based on CPUs and memory. This is "automatic" because there's no user-provided per-node configuration here - it's all auto-generated based on the number of nodes. :param nodes: The number of nodes required in the generated topology. :param flavor: The flavor used for the instance, from which to extract the CPU and memory count. :param vcpus: A set of IDs for CPUs that should be shared. :param pcpus: A set of IDs for CPUs that should be dedicated. """ if (flavor.vcpus % nodes) > 0 or (flavor.memory_mb % nodes) > 0: raise exception.ImageNUMATopologyAsymmetric() cells = [] for node in range(nodes): ncpus = int(flavor.vcpus / nodes) mem = int(flavor.memory_mb / nodes) start = node * ncpus cpus = set(range(start, start + ncpus)) cells.append(objects.InstanceNUMACell( id=node, cpuset=cpus & vcpus, pcpuset=cpus & pcpus, memory=mem)) return objects.InstanceNUMATopology(cells=cells) def _get_numa_topology_manual( nodes: int, flavor: 'objects.Flavor', vcpus: ty.Set[int], pcpus: ty.Set[int], cpu_list: ty.List[ty.Set[int]], mem_list: ty.List[int], ) -> 'objects.InstanceNUMATopology': """Generate a NUMA topology based on user-provided NUMA topology hints. :param nodes: The number of nodes required in the generated topology. :param flavor: The flavor used for the instance, from which to extract the CPU and memory count. :param vcpus: A set of IDs for CPUs that should be shared. :param pcpus: A set of IDs for CPUs that should be dedicated. :param cpu_list: A list of sets of ints; each set in the list corresponds to the set of guest cores to assign to NUMA node $index. :param mem_list: A list of ints; each int corresponds to the amount of memory to assign to NUMA node $index. :returns: The generated instance NUMA topology. """ cells = [] totalmem = 0 availcpus = set(range(flavor.vcpus)) for node in range(nodes): mem = mem_list[node] cpus = cpu_list[node] for cpu in cpus: if cpu > (flavor.vcpus - 1): raise exception.ImageNUMATopologyCPUOutOfRange( cpunum=cpu, cpumax=(flavor.vcpus - 1)) if cpu not in availcpus: raise exception.ImageNUMATopologyCPUDuplicates( cpunum=cpu) availcpus.remove(cpu) cells.append(objects.InstanceNUMACell( id=node, cpuset=cpus & vcpus, pcpuset=cpus & pcpus, memory=mem)) totalmem = totalmem + mem if availcpus: raise exception.ImageNUMATopologyCPUsUnassigned( cpuset=str(availcpus)) if totalmem != flavor.memory_mb: raise exception.ImageNUMATopologyMemoryOutOfRange( memsize=totalmem, memtotal=flavor.memory_mb) return objects.InstanceNUMATopology(cells=cells) def is_realtime_enabled(flavor): flavor_rt = flavor.get('extra_specs', {}).get("hw:cpu_realtime") return strutils.bool_from_string(flavor_rt) def _get_vcpu_pcpu_resources( flavor: 'objects.Flavor', ) -> ty.Tuple[int, int]: requested_vcpu = 0 requested_pcpu = 0 for key, val in flavor.get('extra_specs', {}).items(): if re.match('resources([1-9][0-9]*)?:%s' % orc.VCPU, key): try: requested_vcpu += int(val) except ValueError: # this is handled elsewhere pass if re.match('resources([1-9][0-9]*)?:%s' % orc.PCPU, key): try: requested_pcpu += int(val) except ValueError: # this is handled elsewhere pass return requested_vcpu, requested_pcpu def _get_hyperthreading_trait( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[str]: for key, val in flavor.get('extra_specs', {}).items(): if re.match('trait([1-9][0-9]*)?:%s' % os_traits.HW_CPU_HYPERTHREADING, key): return val if os_traits.HW_CPU_HYPERTHREADING in image_meta.properties.get( 'traits_required', []): return 'required' return None # NOTE(stephenfin): This must be public as it's used elsewhere def get_dedicated_cpu_constraint( flavor: 'objects.Flavor', ) -> ty.Optional[ty.Set[int]]: """Validate and return the requested dedicated CPU mask. :param flavor: ``nova.objects.Flavor`` instance :returns: The dedicated CPUs requested, else None. """ mask = flavor.get('extra_specs', {}).get('hw:cpu_dedicated_mask') if not mask: return None if mask.strip().startswith('^'): pcpus = parse_cpu_spec("0-%d,%s" % (flavor.vcpus - 1, mask)) else: pcpus = parse_cpu_spec("%s" % (mask)) cpus = set(range(flavor.vcpus)) vcpus = cpus - pcpus if not pcpus or not vcpus: raise exception.InvalidMixedInstanceDedicatedMask() if not pcpus.issubset(cpus): msg = _('Mixed instance dedicated vCPU(s) mask is not a subset of ' 'vCPUs in the flavor. See "hw:cpu_dedicated_mask"') raise exception.InvalidMixedInstanceDedicatedMask(msg) return pcpus # NOTE(stephenfin): This must be public as it's used elsewhere def get_realtime_cpu_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[ty.Set[int]]: """Validate and return the requested realtime CPU mask. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :returns: The realtime CPU set requested, else None. """ if not is_realtime_enabled(flavor): return None flavor_mask, image_mask = _get_flavor_image_meta( 'cpu_realtime_mask', flavor, image_meta) # Image masks are used ahead of flavor masks as they will have more # specific requirements mask = image_mask or flavor_mask vcpus_set = set(range(flavor.vcpus)) if mask: if mask.strip().startswith('^'): vcpus_rt = parse_cpu_spec("0-%d,%s" % (flavor.vcpus - 1, mask)) else: vcpus_rt = parse_cpu_spec("%s" % (mask)) else: vcpus_rt = set(range(flavor.vcpus)) if not vcpus_rt: raise exception.RealtimeMaskNotFoundOrInvalid() # TODO(stephenfin): Do this check in numa_get_constraints instead emu_policy = get_emulator_thread_policy_constraint(flavor) if vcpus_set == vcpus_rt and not emu_policy: raise exception.RealtimeMaskNotFoundOrInvalid() if not vcpus_rt.issubset(vcpus_set): msg = _("Realtime policy vCPU(s) mask is configured with RT vCPUs " "that are not a subset of the vCPUs in the flavor. See " "hw:cpu_realtime_mask or hw_cpu_realtime_mask") raise exception.RealtimeMaskNotFoundOrInvalid(msg) return vcpus_rt # NOTE(stephenfin): This must be public as it's used elsewhere def get_emulator_thread_policy_constraint( flavor: 'objects.Flavor', ) -> ty.Optional[str]: """Validate and return the requested emulator threads policy. :param flavor: ``nova.objects.Flavor`` instance :raises: exception.InvalidEmulatorThreadsPolicy if mask was not found or is invalid. :returns: The emulator thread policy requested, else None. """ emu_threads_policy = flavor.get('extra_specs', {}).get( 'hw:emulator_threads_policy') if not emu_threads_policy: return None if emu_threads_policy not in fields.CPUEmulatorThreadsPolicy.ALL: raise exception.InvalidEmulatorThreadsPolicy( requested=emu_threads_policy, available=str(fields.CPUEmulatorThreadsPolicy.ALL)) return emu_threads_policy def get_pci_numa_policy_constraint(flavor, image_meta): """Return pci numa affinity policy or None. :param flavor: a flavor object to read extra specs from :param image_meta: nova.objects.ImageMeta object instance :raises: nova.exception.ImagePCINUMAPolicyForbidden :raises: nova.exception.InvalidPCINUMAAffinity """ flavor_policy, image_policy = _get_flavor_image_meta( 'pci_numa_affinity_policy', flavor, image_meta) if flavor_policy and image_policy and flavor_policy != image_policy: raise exception.ImagePCINUMAPolicyForbidden() policy = flavor_policy or image_policy if policy and policy not in fields.PCINUMAAffinityPolicy.ALL: raise exception.InvalidPCINUMAAffinity(policy=policy) return policy def get_vtpm_constraint( flavor: 'objects.Flavor', image_meta: 'objects.ImageMeta', ) -> ty.Optional[VTPMConfig]: """Validate and return the requested vTPM configuration. :param flavor: ``nova.objects.Flavor`` instance :param image_meta: ``nova.objects.ImageMeta`` instance :raises: nova.exception.FlavorImageConflict if a value is specified in both the flavor and the image, but the values do not match :raises: nova.exception.Invalid if a value or combination of values is invalid :returns: A named tuple containing the vTPM version and model, else None. """ version = _get_unique_flavor_image_meta('tpm_version', flavor, image_meta) if version is None: return None if version not in fields.TPMVersion.ALL: raise exception.Invalid( "Invalid TPM version %(version)r. Allowed values: %(valid)s." % {'version': version, 'valid': ', '.join(fields.TPMVersion.ALL)} ) model = _get_unique_flavor_image_meta('tpm_model', flavor, image_meta) if model is None: # model defaults to TIS model = fields.TPMModel.TIS elif model not in fields.TPMModel.ALL: raise exception.Invalid( "Invalid TPM model %(model)r. Allowed values: %(valid)s." % {'model': model, 'valid': ', '.join(fields.TPMModel.ALL)} ) elif model == fields.TPMModel.CRB and version != fields.TPMVersion.v2_0: raise exception.Invalid( "TPM model CRB is only valid with TPM version 2.0." ) return VTPMConfig(version, model) def numa_get_constraints(flavor, image_meta): """Return topology related to input request. :param flavor: a flavor object to read extra specs from :param image_meta: nova.objects.ImageMeta object instance :raises: exception.InvalidNUMANodesNumber if the number of NUMA nodes is less than 1 or not an integer :raises: exception.ImageNUMATopologyForbidden if an attempt is made to override flavor settings with image properties :raises: exception.MemoryPageSizeInvalid if flavor extra spec or image metadata provides an invalid hugepage value :raises: exception.MemoryPageSizeForbidden if flavor extra spec request conflicts with image metadata request :raises: exception.ImageNUMATopologyIncomplete if the image properties are not correctly specified :raises: exception.ImageNUMATopologyAsymmetric if the number of NUMA nodes is not a factor of the requested total CPUs or memory :raises: exception.ImageNUMATopologyCPUOutOfRange if an instance CPU given in a NUMA mapping is not valid :raises: exception.ImageNUMATopologyCPUDuplicates if an instance CPU is specified in CPU mappings for two NUMA nodes :raises: exception.ImageNUMATopologyCPUsUnassigned if an instance CPU given in a NUMA mapping is not assigned to any NUMA node :raises: exception.ImageNUMATopologyMemoryOutOfRange if sum of memory from each NUMA node is not equal with total requested memory :raises: exception.ImageCPUPinningForbidden if a CPU policy specified in a flavor conflicts with one defined in image metadata :raises: exception.RealtimeConfigurationInvalid if realtime is requested but dedicated CPU policy is not also requested :raises: exception.RealtimeMaskNotFoundOrInvalid if realtime is requested but no mask provided :raises: exception.CPUThreadPolicyConfigurationInvalid if a CPU thread policy conflicts with CPU allocation policy :raises: exception.ImageCPUThreadPolicyForbidden if a CPU thread policy specified in a flavor conflicts with one defined in image metadata :raises: exception.BadRequirementEmulatorThreadsPolicy if CPU emulator threads policy conflicts with CPU allocation policy :raises: exception.InvalidCPUAllocationPolicy if policy is defined with invalid value in image or flavor. :raises: exception.InvalidCPUThreadAllocationPolicy if policy is defined with invalid value in image or flavor. :raises: exception.InvalidRequest if there is a conflict between explicitly and implicitly requested resources of hyperthreading traits :raises: exception.RequiredMixedInstancePolicy if dedicated CPU mask is provided in flavor while CPU policy is not 'mixed'. :raises: exception.RequiredMixedOrRealtimeCPUMask the mixed policy instance dedicated CPU mask can only be specified through either 'hw:cpu_realtime_mask' or 'hw:cpu_dedicated_mask', not both. :raises: exception.InvalidMixedInstanceDedicatedMask if specify an invalid CPU mask for 'hw:cpu_dedicated_mask'. :returns: objects.InstanceNUMATopology, or None """ cpu_policy = get_cpu_policy_constraint(flavor, image_meta) cpu_thread_policy = get_cpu_thread_policy_constraint(flavor, image_meta) realtime_cpus = get_realtime_cpu_constraint(flavor, image_meta) dedicated_cpus = get_dedicated_cpu_constraint(flavor) emu_threads_policy = get_emulator_thread_policy_constraint(flavor) # handle explicit VCPU/PCPU resource requests and the HW_CPU_HYPERTHREADING # trait requested_vcpus, requested_pcpus = _get_vcpu_pcpu_resources(flavor) if cpu_policy and (requested_vcpus or requested_pcpus): raise exception.InvalidRequest( "It is not possible to use the 'resources:VCPU' or " "'resources:PCPU' extra specs in combination with the " "'hw:cpu_policy' extra spec or 'hw_cpu_policy' image metadata " "property; use one or the other") if requested_vcpus and requested_pcpus: raise exception.InvalidRequest( "It is not possible to specify both 'resources:VCPU' and " "'resources:PCPU' extra specs; use one or the other") if requested_pcpus: if (emu_threads_policy == fields.CPUEmulatorThreadsPolicy.ISOLATE and flavor.vcpus + 1 != requested_pcpus): raise exception.InvalidRequest( "You have requested 'hw:emulator_threads_policy=isolate' but " "have not requested sufficient PCPUs to handle this policy; " "you must allocate exactly flavor.vcpus + 1 PCPUs.") if (emu_threads_policy != fields.CPUEmulatorThreadsPolicy.ISOLATE and flavor.vcpus != requested_pcpus): raise exception.InvalidRequest( "There is a mismatch between the number of PCPUs requested " "via 'resourcesNN:PCPU' and the flavor); you must allocate " "exactly flavor.vcpus PCPUs") cpu_policy = fields.CPUAllocationPolicy.DEDICATED if requested_vcpus: # NOTE(stephenfin): It would be nice if we could error out if # flavor.vcpus != resources:PCPU, but that would be a breaking change. # Better to wait until we remove flavor.vcpus or something cpu_policy = fields.CPUAllocationPolicy.SHARED hyperthreading_trait = _get_hyperthreading_trait(flavor, image_meta) if cpu_thread_policy and hyperthreading_trait: raise exception.InvalidRequest( "It is not possible to use the 'trait:HW_CPU_HYPERTHREADING' " "extra spec in combination with the 'hw:cpu_thread_policy' " "extra spec or 'hw_cpu_thread_policy' image metadata property; " "use one or the other") if hyperthreading_trait == 'forbidden': cpu_thread_policy = fields.CPUThreadAllocationPolicy.ISOLATE elif hyperthreading_trait == 'required': cpu_thread_policy = fields.CPUThreadAllocationPolicy.REQUIRE # sanity checks if cpu_policy in (fields.CPUAllocationPolicy.SHARED, None): if cpu_thread_policy: raise exception.CPUThreadPolicyConfigurationInvalid() if emu_threads_policy == fields.CPUEmulatorThreadsPolicy.ISOLATE: raise exception.BadRequirementEmulatorThreadsPolicy() # 'hw:cpu_dedicated_mask' should not be defined in a flavor with # 'shared' policy. if dedicated_cpus: raise exception.RequiredMixedInstancePolicy() if realtime_cpus: raise exception.RealtimeConfigurationInvalid() elif cpu_policy == fields.CPUAllocationPolicy.DEDICATED: # 'hw:cpu_dedicated_mask' should not be defined in a flavor with # 'dedicated' policy. if dedicated_cpus: raise exception.RequiredMixedInstancePolicy() else: # MIXED if realtime_cpus and dedicated_cpus: raise exception.RequiredMixedOrRealtimeCPUMask() if not (realtime_cpus or dedicated_cpus): raise exception.RequiredMixedOrRealtimeCPUMask() # NOTE(huaquiang): If using mixed with realtime, then cores listed in # the realtime mask are dedicated and everything else is shared. dedicated_cpus = dedicated_cpus or realtime_cpus nodes = _get_numa_node_count_constraint(flavor, image_meta) pagesize = _get_numa_pagesize_constraint(flavor, image_meta) vpmems = get_vpmems(flavor) # If 'hw:cpu_dedicated_mask' is not found in flavor extra specs, the # 'dedicated_cpus' variable is None, while we hope it being an empty set. dedicated_cpus = dedicated_cpus or set() if cpu_policy == fields.CPUAllocationPolicy.DEDICATED: # But for an instance with 'dedicated' CPU allocation policy, all # CPUs are 'dedicated' CPUs, which is 1:1 pinned to a host CPU. dedicated_cpus = set(range(flavor.vcpus)) # NOTE(stephenfin): There are currently four things that will configure a # NUMA topology for an instance: # # - The user explicitly requesting one # - The use of CPU pinning # - The use of hugepages # - The use of vPMEM if nodes or pagesize or vpmems or cpu_policy in ( fields.CPUAllocationPolicy.DEDICATED, fields.CPUAllocationPolicy.MIXED, ): # NOTE(huaqiang): Here we build the instance dedicated CPU set and the # shared CPU set, through 'pcpus' and 'vcpus' respectively, # which will be used later to calculate the per-NUMA-cell CPU set. cpus = set(range(flavor.vcpus)) pcpus = dedicated_cpus vcpus = cpus - pcpus nodes = nodes or 1 cpu_list = _get_numa_cpu_constraint(flavor, image_meta) mem_list = _get_numa_mem_constraint(flavor, image_meta) if cpu_list is None and mem_list is None: numa_topology = _get_numa_topology_auto( nodes, flavor, vcpus, pcpus, ) elif cpu_list is not None and mem_list is not None: # If any node has data set, all nodes must have data set if len(cpu_list) != nodes or len(mem_list) != nodes: raise exception.ImageNUMATopologyIncomplete() numa_topology = _get_numa_topology_manual( nodes, flavor, vcpus, pcpus, cpu_list, mem_list ) else: # If one property list is specified both must be raise exception.ImageNUMATopologyIncomplete() # We currently support the same pagesize, CPU policy and CPU thread # policy for all cells, but these are still stored on a per-cell # basis :( for c in numa_topology.cells: setattr(c, 'pagesize', pagesize) setattr(c, 'cpu_policy', cpu_policy) setattr(c, 'cpu_thread_policy', cpu_thread_policy) # ...but emulator threads policy is not \o/ numa_topology.emulator_threads_policy = emu_threads_policy else: numa_topology = None return numa_topology def _numa_cells_support_network_metadata( host_topology: 'objects.NUMATopology', chosen_host_cells: ty.List['objects.NUMACell'], network_metadata: 'objects.NetworkMetadata', ) -> bool: """Determine whether the cells can accept the network requests. :param host_topology: The entire host topology, used to find non-chosen host cells. :param chosen_host_cells: List of NUMACells to extract possible network NUMA affinity from. :param network_metadata: The combined summary of physnets and tunneled networks required by this topology or None. :return: True if any NUMA affinity constraints for requested networks can be satisfied, else False """ if not network_metadata: return True required_physnets: ty.Set[str] = set() if 'physnets' in network_metadata: # use set() to avoid modifying the original data structure required_physnets = set(network_metadata.physnets) required_tunnel: bool = False if 'tunneled' in network_metadata: required_tunnel = network_metadata.tunneled if required_physnets: # identify requested physnets that have an affinity to any of our # chosen host NUMA cells for host_cell in chosen_host_cells: if 'network_metadata' not in host_cell: continue # if one of these cells provides affinity for one or more physnets, # drop said physnet(s) from the list we're searching for required_physnets -= required_physnets.intersection( host_cell.network_metadata.physnets) # however, if we still require some level of NUMA affinity, we need # to make sure one of the other NUMA cells isn't providing that; note # that NUMA affinity might not be provided for all physnets so we are # in effect skipping these for host_cell in host_topology.cells: if 'network_metadata' not in host_cell: continue # if one of these cells provides affinity for one or more physnets, # we need to fail because we should be using that node and are not if required_physnets.intersection( host_cell.network_metadata.physnets): return False if required_tunnel: # identify if tunneled networks have an affinity to any of our chosen # host NUMA cells for host_cell in chosen_host_cells: if 'network_metadata' not in host_cell: continue if host_cell.network_metadata.tunneled: return True # however, if we still require some level of NUMA affinity, we need to # make sure one of the other NUMA cells isn't providing that; note # that, as with physnets, NUMA affinity might not be defined for # tunneled networks and we'll simply continue if this is the case for host_cell in host_topology.cells: if 'network_metadata' not in host_cell: continue if host_cell.network_metadata.tunneled: return False return True def numa_fit_instance_to_host( host_topology: 'objects.NUMATopology', instance_topology: 'objects.InstanceNUMATopology', limits: ty.Optional['objects.NUMATopologyLimit'] = None, pci_requests: ty.Optional['objects.InstancePCIRequests'] = None, pci_stats: ty.Optional[stats.PciDeviceStats] = None, ): """Fit the instance topology onto the host topology. Given a host, instance topology, and (optional) limits, attempt to fit instance cells onto all permutations of host cells by calling the _fit_instance_cell method, and return a new InstanceNUMATopology with its cell ids set to host cell ids of the first successful permutation, or None. :param host_topology: objects.NUMATopology object to fit an instance on :param instance_topology: objects.InstanceNUMATopology to be fitted :param limits: objects.NUMATopologyLimits that defines limits :param pci_requests: instance pci_requests :param pci_stats: pci_stats for the host :returns: objects.InstanceNUMATopology with its cell IDs set to host cell ids of the first successful permutation, or None """ if not (host_topology and instance_topology): LOG.debug("Require both a host and instance NUMA topology to " "fit instance on host.") return elif len(host_topology) < len(instance_topology): LOG.debug("There are not enough NUMA nodes on the system to schedule " "the instance correctly. Required: %(required)s, actual: " "%(actual)s", {'required': len(instance_topology), 'actual': len(host_topology)}) return emulator_threads_policy = None if 'emulator_threads_policy' in instance_topology: emulator_threads_policy = instance_topology.emulator_threads_policy network_metadata = None if limits and 'network_metadata' in limits: network_metadata = limits.network_metadata host_cells = host_topology.cells # If PCI device(s) are not required, prefer host cells that don't have # devices attached. Presence of a given numa_node in a PCI pool is # indicative of a PCI device being associated with that node if not pci_requests and pci_stats: # TODO(stephenfin): pci_stats can't be None here but mypy can't figure # that out for some reason host_cells = sorted(host_cells, key=lambda cell: cell.id in [ pool['numa_node'] for pool in pci_stats.pools]) # type: ignore for host_cell_perm in itertools.permutations( host_cells, len(instance_topology)): chosen_instance_cells: ty.List['objects.InstanceNUMACell'] = [] chosen_host_cells: ty.List['objects.NUMACell'] = [] for host_cell, instance_cell in zip( host_cell_perm, instance_topology.cells): try: cpuset_reserved = 0 if (instance_topology.emulator_threads_isolated and len(chosen_instance_cells) == 0): # For the case of isolate emulator threads, to # make predictable where that CPU overhead is # located we always configure it to be on host # NUMA node associated to the guest NUMA node # 0. cpuset_reserved = 1 got_cell = _numa_fit_instance_cell( host_cell, instance_cell, limits, cpuset_reserved) except exception.MemoryPageSizeNotSupported: # This exception will been raised if instance cell's # custom pagesize is not supported with host cell in # _numa_cell_supports_pagesize_request function. break if got_cell is None: break chosen_host_cells.append(host_cell) chosen_instance_cells.append(got_cell) if len(chosen_instance_cells) != len(host_cell_perm): continue if pci_requests and pci_stats and not pci_stats.support_requests( pci_requests, chosen_instance_cells): continue if network_metadata and not _numa_cells_support_network_metadata( host_topology, chosen_host_cells, network_metadata): continue return objects.InstanceNUMATopology( cells=chosen_instance_cells, emulator_threads_policy=emulator_threads_policy) def numa_get_reserved_huge_pages(): """Returns reserved memory pages from host option. Based from the compute node option reserved_huge_pages, generate a well formatted list of dict which can be used to build a valid NUMATopology. :raises: exception.InvalidReservedMemoryPagesOption when reserved_huge_pages option is not correctly set. :returns: A dict of dicts keyed by NUMA node IDs; keys of child dict are pages size and values of the number reserved. """ if not CONF.reserved_huge_pages: return {} try: bucket: ty.Dict[int, ty.Dict[int, int]] = collections.defaultdict(dict) for cfg in CONF.reserved_huge_pages: try: pagesize = int(cfg['size']) except ValueError: pagesize = strutils.string_to_bytes( cfg['size'], return_int=True) / units.Ki bucket[int(cfg['node'])][pagesize] = int(cfg['count']) except (ValueError, TypeError, KeyError): raise exception.InvalidReservedMemoryPagesOption( conf=CONF.reserved_huge_pages) return bucket def _get_smallest_pagesize(host_cell): """Returns the smallest available page size based on hostcell""" avail_pagesize = [page.size_kb for page in host_cell.mempages] avail_pagesize.sort() return avail_pagesize[0] def _numa_pagesize_usage_from_cell(host_cell, instance_cell, sign): if 'pagesize' in instance_cell and instance_cell.pagesize: pagesize = instance_cell.pagesize else: pagesize = _get_smallest_pagesize(host_cell) topo = [] for pages in host_cell.mempages: if pages.size_kb == pagesize: topo.append(objects.NUMAPagesTopology( size_kb=pages.size_kb, total=pages.total, used=max(0, pages.used + instance_cell.memory * units.Ki / pages.size_kb * sign), reserved=pages.reserved if 'reserved' in pages else 0)) else: topo.append(pages) return topo def numa_usage_from_instance_numa(host_topology, instance_topology, free=False): """Update the host topology usage. Update the host NUMA topology based on usage by the provided instance NUMA topology. :param host_topology: objects.NUMATopology to update usage information :param instance_topology: objects.InstanceNUMATopology from which to retrieve usage information. :param free: If true, decrease, rather than increase, host usage based on instance usage. :returns: Updated objects.NUMATopology for host """ if not host_topology or not instance_topology: return host_topology cells = [] sign = -1 if free else 1 for host_cell in host_topology.cells: memory_usage = host_cell.memory_usage shared_cpus_usage = host_cell.cpu_usage new_cell = objects.NUMACell( id=host_cell.id, cpuset=host_cell.cpuset, pcpuset=host_cell.pcpuset, memory=host_cell.memory, cpu_usage=0, memory_usage=0, mempages=host_cell.mempages, pinned_cpus=host_cell.pinned_cpus, siblings=host_cell.siblings) if 'network_metadata' in host_cell: new_cell.network_metadata = host_cell.network_metadata for cellid, instance_cell in enumerate(instance_topology.cells): if instance_cell.id != host_cell.id: continue new_cell.mempages = _numa_pagesize_usage_from_cell( new_cell, instance_cell, sign) memory_usage = memory_usage + sign * instance_cell.memory shared_cpus_usage += sign * len(instance_cell.cpuset) if instance_cell.cpu_policy in ( None, fields.CPUAllocationPolicy.SHARED, ): continue pinned_cpus = set(instance_cell.cpu_pinning.values()) if instance_cell.cpuset_reserved: pinned_cpus |= instance_cell.cpuset_reserved if free: if (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.ISOLATE): new_cell.unpin_cpus_with_siblings(pinned_cpus) else: new_cell.unpin_cpus(pinned_cpus) else: if (instance_cell.cpu_thread_policy == fields.CPUThreadAllocationPolicy.ISOLATE): new_cell.pin_cpus_with_siblings(pinned_cpus) else: new_cell.pin_cpus(pinned_cpus) # NOTE(stephenfin): We don't need to set 'pinned_cpus' here since that # was done in the above '(un)pin_cpus(_with_siblings)' functions new_cell.memory_usage = max(0, memory_usage) new_cell.cpu_usage = max(0, shared_cpus_usage) cells.append(new_cell) return objects.NUMATopology(cells=cells) def get_vpmems(flavor): """Return vpmems related to input request. :param flavor: a flavor object to read extra specs from :returns: a vpmem label list """ vpmems_info = flavor.get('extra_specs', {}).get('hw:pmem') if not vpmems_info: return [] vpmem_labels = vpmems_info.split(',') formed_labels = [] for label in vpmem_labels: formed_label = label.strip() if formed_label: formed_labels.append(formed_label) return formed_labels def check_hw_rescue_props(image_meta): """Confirm that hw_rescue_* image properties are present. """ hw_rescue_props = ['hw_rescue_device', 'hw_rescue_bus'] return any(key in image_meta.properties for key in hw_rescue_props)