nova/nova/pci/stats.py

602 lines
25 KiB
Python

# Copyright (c) 2013 Intel, Inc.
# Copyright (c) 2013 OpenStack Foundation
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from oslo_config import cfg
from oslo_log import log as logging
from nova import exception
from nova.objects import fields
from nova.objects import pci_device_pool
from nova.pci import utils
from nova.pci import whitelist
CONF = cfg.CONF
LOG = logging.getLogger(__name__)
class PciDeviceStats(object):
"""PCI devices summary information.
According to the PCI SR-IOV spec, a PCI physical function can have up to
256 PCI virtual functions, thus the number of assignable PCI functions in
a cloud can be big. The scheduler needs to know all device availability
information in order to determine which compute hosts can support a PCI
request. Passing individual virtual device information to the scheduler
does not scale, so we provide summary information.
Usually the virtual functions provided by a host PCI device have the same
value for most properties, like vendor_id, product_id and class type.
The PCI stats class summarizes this information for the scheduler.
The pci stats information is maintained exclusively by compute node
resource tracker and updated to database. The scheduler fetches the
information and selects the compute node accordingly. If a compute
node is selected, the resource tracker allocates the devices to the
instance and updates the pci stats information.
This summary information will be helpful for cloud management also.
"""
pool_keys = ['product_id', 'vendor_id', 'numa_node', 'dev_type']
def __init__(self, numa_topology, stats=None, dev_filter=None):
super(PciDeviceStats, self).__init__()
self.numa_topology = numa_topology
# NOTE(sbauza): Stats are a PCIDevicePoolList object
self.pools = [pci_pool.to_dict()
for pci_pool in stats] if stats else []
self.pools.sort(key=lambda item: len(item))
self.dev_filter = dev_filter or whitelist.Whitelist(
CONF.pci.passthrough_whitelist)
def _equal_properties(self, dev, entry, matching_keys):
return all(dev.get(prop) == entry.get(prop)
for prop in matching_keys)
def _find_pool(self, dev_pool):
"""Return the first pool that matches dev."""
for pool in self.pools:
pool_keys = pool.copy()
del pool_keys['count']
del pool_keys['devices']
if (len(pool_keys.keys()) == len(dev_pool.keys()) and
self._equal_properties(dev_pool, pool_keys, dev_pool.keys())):
return pool
def _create_pool_keys_from_dev(self, dev):
"""create a stats pool dict that this dev is supposed to be part of
Note that this pool dict contains the stats pool's keys and their
values. 'count' and 'devices' are not included.
"""
# Don't add a device that doesn't have a matching device spec.
# This can happen during initial sync up with the controller
devspec = self.dev_filter.get_devspec(dev)
if not devspec:
return
tags = devspec.get_tags()
pool = {k: getattr(dev, k) for k in self.pool_keys}
if tags:
pool.update(tags)
# NOTE(gibi): parent_ifname acts like a tag during pci claim but
# not provided as part of the whitelist spec as it is auto detected
# by the virt driver.
# This key is used for match InstancePciRequest backed by neutron ports
# that has resource_request and therefore that has resource allocation
# already in placement.
if dev.extra_info.get('parent_ifname'):
pool['parent_ifname'] = dev.extra_info['parent_ifname']
return pool
def _get_pool_with_device_type_mismatch(self, dev):
"""Check for device type mismatch in the pools for a given device.
Return (pool, device) if device type does not match or a single None
if the device type matches.
"""
for pool in self.pools:
for device in pool['devices']:
if device.address == dev.address:
if dev.dev_type != pool["dev_type"]:
return pool, device
return None
return None
def update_device(self, dev):
"""Update a device to its matching pool."""
pool_device_info = self._get_pool_with_device_type_mismatch(dev)
if pool_device_info is None:
return
pool, device = pool_device_info
pool['devices'].remove(device)
self._decrease_pool_count(self.pools, pool)
self.add_device(dev)
def add_device(self, dev):
"""Add a device to its matching pool."""
dev_pool = self._create_pool_keys_from_dev(dev)
if dev_pool:
pool = self._find_pool(dev_pool)
if not pool:
dev_pool['count'] = 0
dev_pool['devices'] = []
self.pools.append(dev_pool)
self.pools.sort(key=lambda item: len(item))
pool = dev_pool
pool['count'] += 1
pool['devices'].append(dev)
@staticmethod
def _decrease_pool_count(pool_list, pool, count=1):
"""Decrement pool's size by count.
If pool becomes empty, remove pool from pool_list.
"""
if pool['count'] > count:
pool['count'] -= count
count = 0
else:
count -= pool['count']
pool_list.remove(pool)
return count
def remove_device(self, dev):
"""Remove one device from the first pool that it matches."""
dev_pool = self._create_pool_keys_from_dev(dev)
if dev_pool:
pool = self._find_pool(dev_pool)
if not pool:
raise exception.PciDevicePoolEmpty(
compute_node_id=dev.compute_node_id, address=dev.address)
pool['devices'].remove(dev)
self._decrease_pool_count(self.pools, pool)
def get_free_devs(self):
free_devs = []
for pool in self.pools:
free_devs.extend(pool['devices'])
return free_devs
def consume_requests(self, pci_requests, numa_cells=None):
alloc_devices = []
for request in pci_requests:
count = request.count
pools = self._filter_pools(self.pools, request, numa_cells)
# Failed to allocate the required number of devices. Return the
# devices already allocated during previous iterations back to
# their pools
if not pools:
LOG.error("Failed to allocate PCI devices for instance. "
"Unassigning devices back to pools. "
"This should not happen, since the scheduler "
"should have accurate information, and allocation "
"during claims is controlled via a hold "
"on the compute node semaphore.")
for d in range(len(alloc_devices)):
self.add_device(alloc_devices.pop())
return None
for pool in pools:
if pool['count'] >= count:
num_alloc = count
else:
num_alloc = pool['count']
count -= num_alloc
pool['count'] -= num_alloc
for d in range(num_alloc):
pci_dev = pool['devices'].pop()
self._handle_device_dependents(pci_dev)
pci_dev.request_id = request.request_id
alloc_devices.append(pci_dev)
if count == 0:
break
return alloc_devices
def _handle_device_dependents(self, pci_dev):
"""Remove device dependents or a parent from pools.
In case the device is a PF, all of it's dependent VFs should
be removed from pools count, if these are present.
When the device is a VF, or a VDPA device, it's parent PF
pool count should be decreased, unless it is no longer in a pool.
"""
if pci_dev.dev_type == fields.PciDeviceType.SRIOV_PF:
vfs_list = pci_dev.child_devices
if vfs_list:
for vf in vfs_list:
self.remove_device(vf)
elif pci_dev.dev_type in (
fields.PciDeviceType.SRIOV_VF,
fields.PciDeviceType.VDPA,
):
try:
parent = pci_dev.parent_device
# Make sure not to decrease PF pool count if this parent has
# been already removed from pools
if parent in self.get_free_devs():
self.remove_device(parent)
except exception.PciDeviceNotFound:
return
def _filter_pools_for_spec(self, pools, request):
"""Filter out pools that don't match the request's device spec.
Exclude pools that do not match the specified ``vendor_id``,
``product_id`` and/or ``device_type`` field, or any of the other
arbitrary tags such as ``physical_network``, specified in the request.
:param pools: A list of PCI device pool dicts
:param request: An InstancePCIRequest object describing the type,
quantity and required NUMA affinity of device(s) we want.
:returns: A list of pools that can be used to support the request if
this is possible.
"""
request_specs = request.spec
return [
pool for pool in pools
if utils.pci_device_prop_match(pool, request_specs)
]
def _filter_pools_for_numa_cells(self, pools, request, numa_cells):
"""Filter out pools with the wrong NUMA affinity, if required.
Exclude pools that do not have *suitable* PCI NUMA affinity.
``numa_policy`` determines what *suitable* means, being one of
PREFERRED (nice-to-have), LEGACY (must-have-if-available) and REQUIRED
(must-have). We iterate through the various policies in order of
strictness. This means that even if we only *prefer* PCI-NUMA affinity,
we will still attempt to provide it if possible.
:param pools: A list of PCI device pool dicts
:param request: An InstancePCIRequest object describing the type,
quantity and required NUMA affinity of device(s) we want.
:param numa_cells: A list of InstanceNUMACell objects whose ``id``
corresponds to the ``id`` of host NUMACells.
:returns: A list of pools that can, together, provide at least
``requested_count`` PCI devices with the level of NUMA affinity
required by ``numa_policy``, else all pools that can satisfy this
policy even if it's not enough.
"""
if not numa_cells:
return pools
# we default to the 'legacy' policy for...of course...legacy reasons
requested_policy = fields.PCINUMAAffinityPolicy.LEGACY
if 'numa_policy' in request:
requested_policy = request.numa_policy or requested_policy
requested_count = request.count
numa_cell_ids = [cell.id for cell in numa_cells]
# filter out pools which numa_node is not included in numa_cell_ids
filtered_pools = [
pool for pool in pools if any(utils.pci_device_prop_match(
pool, [{'numa_node': cell}]) for cell in numa_cell_ids)]
# we can't apply a less strict policy than the one requested, so we
# need to return if we've demanded a NUMA affinity of REQUIRED.
# However, NUMA affinity is a good thing. If we can get enough devices
# with the stricter policy then we will use them.
if requested_policy == fields.PCINUMAAffinityPolicy.REQUIRED or sum(
pool['count'] for pool in filtered_pools) >= requested_count:
return filtered_pools
# the SOCKET policy is a bit of a special case. It's less strict than
# REQUIRED (so REQUIRED will automatically fulfil SOCKET, at least
# with our assumption of never having multiple sockets per NUMA node),
# but not always more strict than LEGACY: a PCI device with no NUMA
# affinity will fulfil LEGACY but not SOCKET. If we have SOCKET,
# process it here and don't continue.
if requested_policy == fields.PCINUMAAffinityPolicy.SOCKET:
return self._filter_pools_for_socket_affinity(pools, numa_cells)
# some systems don't report NUMA node info for PCI devices, in which
# case None is reported in 'pci_device.numa_node'. The LEGACY policy
# allows us to use these devices so we include None in the list of
# suitable NUMA cells.
numa_cell_ids.append(None)
# filter out pools which numa_node is not included in numa_cell_ids
filtered_pools = [
pool for pool in pools if any(utils.pci_device_prop_match(
pool, [{'numa_node': cell}]) for cell in numa_cell_ids)]
# once again, we can't apply a less strict policy than the one
# requested, so we need to return if we've demanded a NUMA affinity of
# LEGACY. Similarly, we will also return if we have enough devices to
# satisfy this somewhat strict policy.
if requested_policy == fields.PCINUMAAffinityPolicy.LEGACY or sum(
pool['count'] for pool in filtered_pools) >= requested_count:
return filtered_pools
# if we've got here, we're using the PREFERRED policy and weren't able
# to provide anything with stricter affinity. Use whatever devices you
# can, folks.
return sorted(
pools, key=lambda pool: pool.get('numa_node') not in numa_cell_ids)
def _filter_pools_for_socket_affinity(self, pools, numa_cells):
host_cells = self.numa_topology.cells
# bail early if we don't have socket information for all host_cells.
# This could happen if we're running on an weird older system with
# multiple sockets per NUMA node, which is a configuration that we
# explicitly chose not to support.
if any(cell.socket is None for cell in host_cells):
LOG.debug('No socket information in host NUMA cell(s).')
return []
# get a set of host sockets that the guest cells are in. Since guest
# cell IDs map to host cell IDs, we can just lookup the latter's
# socket.
socket_ids = set()
for guest_cell in numa_cells:
for host_cell in host_cells:
if guest_cell.id == host_cell.id:
socket_ids.add(host_cell.socket)
# now get a set of host NUMA nodes that are in the above sockets
allowed_numa_nodes = set()
for host_cell in host_cells:
if host_cell.socket in socket_ids:
allowed_numa_nodes.add(host_cell.id)
# filter out pools that are not in one of the correct host NUMA nodes.
return [
pool for pool in pools if any(
utils.pci_device_prop_match(pool, [{'numa_node': numa_node}])
for numa_node in allowed_numa_nodes
)
]
def _filter_pools_for_unrequested_pfs(self, pools, request):
"""Filter out pools with PFs, unless these are required.
This is necessary in cases where PFs and VFs have the same product_id
and generally useful elsewhere.
:param pools: A list of PCI device pool dicts
:param request: An InstancePCIRequest object describing the type,
quantity and required NUMA affinity of device(s) we want.
:returns: A list of pools that can be used to support the request if
this is possible.
"""
if all(
spec.get('dev_type') != fields.PciDeviceType.SRIOV_PF
for spec in request.spec
):
pools = [
pool for pool in pools
if not pool.get('dev_type') == fields.PciDeviceType.SRIOV_PF
]
return pools
def _filter_pools_for_unrequested_vdpa_devices(self, pools, request):
"""Filter out pools with VDPA devices, unless these are required.
This is necessary as vdpa devices require special handling and
should not be allocated to generic pci device requests.
:param pools: A list of PCI device pool dicts
:param request: An InstancePCIRequest object describing the type,
quantity and required NUMA affinity of device(s) we want.
:returns: A list of pools that can be used to support the request if
this is possible.
"""
if all(
spec.get('dev_type') != fields.PciDeviceType.VDPA
for spec in request.spec
):
pools = [
pool for pool in pools
if not pool.get('dev_type') == fields.PciDeviceType.VDPA
]
return pools
def _filter_pools(self, pools, request, numa_cells):
"""Determine if an individual PCI request can be met.
Filter pools, which are collections of devices with similar traits, to
identify those that can support the provided PCI request.
If ``numa_cells`` is provided then NUMA locality may be taken into
account, depending on the value of ``request.numa_policy``.
:param pools: A list of PCI device pool dicts
:param request: An InstancePCIRequest object describing the type,
quantity and required NUMA affinity of device(s) we want.
:param numa_cells: A list of InstanceNUMACell objects whose ``id``
corresponds to the ``id`` of host NUMACell objects.
:returns: A list of pools that can be used to support the request if
this is possible, else None.
"""
# NOTE(vladikr): This code may be open to race conditions.
# Two concurrent requests may succeed when called support_requests
# because this method does not remove related devices from the pools
# Firstly, let's exclude all devices that don't match our spec (e.g.
# they've got different PCI IDs or something)
before_count = sum([pool['count'] for pool in pools])
pools = self._filter_pools_for_spec(pools, request)
after_count = sum([pool['count'] for pool in pools])
if after_count < before_count:
LOG.debug(
'Dropped %d devices due to mismatched PCI attribute(s)',
before_count - after_count
)
if after_count < request.count:
LOG.debug('Not enough PCI devices left to satisfy request')
return None
# Next, let's exclude all devices that aren't on the correct NUMA node
# or socket, *assuming* we have devices and care about that, as
# determined by policy
before_count = after_count
pools = self._filter_pools_for_numa_cells(pools, request, numa_cells)
after_count = sum([pool['count'] for pool in pools])
if after_count < before_count:
LOG.debug(
'Dropped %d devices as they are on the wrong NUMA node(s)',
before_count - after_count
)
if after_count < request.count:
LOG.debug('Not enough PCI devices left to satisfy request')
return None
# If we're not requesting PFs then we should not use these.
# Exclude them.
before_count = after_count
pools = self._filter_pools_for_unrequested_pfs(pools, request)
after_count = sum([pool['count'] for pool in pools])
if after_count < before_count:
LOG.debug(
'Dropped %d devices as they are PFs which we have not '
'requested',
before_count - after_count
)
if after_count < request.count:
LOG.debug('Not enough PCI devices left to satisfy request')
return None
# If we're not requesting VDPA devices then we should not use these
# either. Exclude them.
before_count = after_count
pools = self._filter_pools_for_unrequested_vdpa_devices(pools, request)
after_count = sum([pool['count'] for pool in pools])
if after_count < before_count:
LOG.debug(
'Dropped %d devices as they are VDPA devices which we have '
'not requested',
before_count - after_count
)
if after_count < request.count:
LOG.debug('Not enough PCI devices left to satisfy request')
return None
return pools
def support_requests(self, requests, numa_cells=None):
"""Determine if the PCI requests can be met.
Determine, based on a compute node's PCI stats, if an instance can be
scheduled on the node. **Support does not mean real allocation**.
If ``numa_cells`` is provided then NUMA locality may be taken into
account, depending on the value of ``numa_policy``.
:param requests: A list of InstancePCIRequest object describing the
types, quantities and required NUMA affinities of devices we want.
:type requests: nova.objects.InstancePCIRequests
:param numa_cells: A list of InstanceNUMACell objects whose ``id``
corresponds to the ``id`` of host NUMACells, or None.
:returns: Whether this compute node can satisfy the given request.
"""
# NOTE(yjiang5): this function has high possibility to fail,
# so no exception should be triggered for performance reason.
return all(
self._filter_pools(self.pools, r, numa_cells) for r in requests
)
def _apply_request(self, pools, request, numa_cells=None):
"""Apply an individual PCI request.
Apply a PCI request against a given set of PCI device pools, which are
collections of devices with similar traits.
If ``numa_cells`` is provided then NUMA locality may be taken into
account, depending on the value of ``request.numa_policy``.
:param pools: A list of PCI device pool dicts
:param request: An InstancePCIRequest object describing the type,
quantity and required NUMA affinity of device(s) we want.
:param numa_cells: A list of InstanceNUMACell objects whose ``id``
corresponds to the ``id`` of host NUMACell objects.
:returns: True if the request was applied against the provided pools
successfully, else False.
"""
# NOTE(vladikr): This code maybe open to race conditions.
# Two concurrent requests may succeed when called support_requests
# because this method does not remove related devices from the pools
filtered_pools = self._filter_pools(pools, request, numa_cells)
if not filtered_pools:
return False
count = request.count
for pool in filtered_pools:
count = self._decrease_pool_count(pools, pool, count)
if not count:
break
return True
def apply_requests(self, requests, numa_cells=None):
"""Apply PCI requests to the PCI stats.
This is used in multiple instance creation, when the scheduler has to
maintain how the resources are consumed by the instances.
If ``numa_cells`` is provided then NUMA locality may be taken into
account, depending on the value of ``numa_policy``.
:param requests: A list of InstancePCIRequest object describing the
types, quantities and required NUMA affinities of devices we want.
:type requests: nova.objects.InstancePCIRequests
:param numa_cells: A list of InstanceNUMACell objects whose ``id``
corresponds to the ``id`` of host NUMACells, or None.
:raises: exception.PciDeviceRequestFailed if this compute node cannot
satisfy the given request.
"""
if not all(
self._apply_request(self.pools, r, numa_cells) for r in requests
):
raise exception.PciDeviceRequestFailed(requests=requests)
def __iter__(self):
# 'devices' shouldn't be part of stats
pools = []
for pool in self.pools:
tmp = {k: v for k, v in pool.items() if k != 'devices'}
pools.append(tmp)
return iter(pools)
def clear(self):
"""Clear all the stats maintained."""
self.pools = []
def __eq__(self, other):
return self.pools == other.pools
def to_device_pools_obj(self):
"""Return the contents of the pools as a PciDevicePoolList object."""
stats = [x for x in self]
return pci_device_pool.from_pci_stats(stats)